Skip to main content
Log in

pH- and thermo-sensitive semi-IPN hydrogels composed of chitosan, N-isopropylacrylamide, and poly(ethylene glycol)-co-poly(ε-caprolactone) macromer for drug delivery

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, semi-IPN chitosan/poly(N-isopropylacrylamide) (PNIPAAm) hydrogels have been prepared via in situ UV-photo-crosslinking of N-isopropylacrylamide monomer using poly(ethylene glycol)-co-poly(ε-caprolactone) (PEG-co-PCL) macromer as a crosslinker in the presence of chitosan. Swelling properties of the resultant hydrogels were studied by investigating pH- and temperature dependence of equilibrium swelling ratio and oscillatory swelling–deswelling kinetics. It was found that semi-IPN hydrogels responded to both temperature and pH changes, and such stimuli-responsiveness was rapidly reversible. The rheological measurements demonstrated that the incorporation of chitosan greatly improved the mechanical strength of the hydrogels prepared. The release profiles of bovine serum albumin (BSA) from the hydrogels were also evaluated. The results showed that the release rate of BSA was higher in pH 2.0 buffer solution than in pH 7.4 buffer solution at 37 °C. Such double-sensitive hydrogels have the potential to use as smart carriers for drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kim S, Lee CK, Lee YM, Kim IY, Kim SI (2003) Electrical/pH-sensitive swelling behavior of polyelectrolyte hydrogels prepared with hyaluronic acid-poly(vinyl alcohol) interpenetrating polymer networks. React Funct Polym 55:291–298

    Article  CAS  Google Scholar 

  2. Kutty JK, Cho E, Lee JS, Vyavahare NR, Webb K (2007) The effect of hyaluronic acid incorporation on fibroblast spreading and proliferation within PEG-diacrylate based semi-interpenetrating networks. Biomaterials 28:4928–4938

    Article  CAS  Google Scholar 

  3. Jeong B, Bae YH, Lee DS, Kim SW (1997) Biodegradable block copolymers as injectable drug-delivery systems. Nature 388:860–862

    Article  CAS  Google Scholar 

  4. Kost J, Langer R (2001) Responsive polymeric delivery systems. Adv Drug Del Rev 46:125–148

    Article  CAS  Google Scholar 

  5. Soppimath KS, Liu LH, Seow WY, Liu SQ, Powell R, Chan P, Yang YY (2007) Multifunctional core/shell nanoparticles self-assembled from pH-induced thermosensitive polymers for targeted intracellular anticancer drug delivery. Adv Funct Mater 17:355–362

    Article  CAS  Google Scholar 

  6. Guilherme MR, Silva R, Girotto EM, Rubira AF, Muniz EC (2003) Hydrogels based on PAAm network with PNIPAAm included: hydrophilic–hydrophobic transition measured by the partition of Orange II and Methylene Blue in water. Polymer 44:4213–4219

    Article  CAS  Google Scholar 

  7. Chen GH, Hoffman AS (1995) Temperature-induced phase transition behaviors of random vs. graft copolymers of N-isopropylacrylamide and acrylic acid. Macromol Rapid Commun 16:175–182

    Article  CAS  Google Scholar 

  8. Shibayama M, Fujikawa Y, Nomura S (1996) Dynamic light scattering study of poly(N-isopropylacrylamide-co-acrylic acid) gels. Macromolecules 29:6535–6540

    Article  CAS  Google Scholar 

  9. Kobayashia J, Kikuchib A, Sakaia K, Okano T (2002) Aqueous chromatography utilizing hydrophobicity-modified anionic temperature-responsive hydrogel for stationary phases. J Chromatogr A 958:109–119

    Article  Google Scholar 

  10. Yoo MK, Sung YK, Lee YM, Cho CS (2000) Effect of polyelectrolyte on the lower critical solution temperature of poly(N-isopropyl acrylamide) in the poly(NIPAAm-co-acrylic acid) hydrogel. Polymer 41:5713–5719

    Article  CAS  Google Scholar 

  11. Zhao SP, Ma D, Zhang LM (2006) New semi-interpenetrating network hydrogels: synthesis, characterization and properties. Macromol Biosci 6:445–451

    Article  CAS  Google Scholar 

  12. Klouda L, Mikos AG (2008) Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm 68:34–45

    Article  CAS  Google Scholar 

  13. Chen J, Liu M, Jin S, Liu H (2008) Synthesis and characterization of κ-carrageenan/poly(N,N-diethylacrylamide) semi-interpenetrating polymer network hydrogels with rapid response to temperature. Polym Adv Technol 19:1656–1663

    CAS  Google Scholar 

  14. Muniz EC, Geuskens G (2001) Compressive elastic modulus of polyacrylamide hydrogels and semi-IPNs with poly(N-isopropylacrylamide). Macromolecules 34:4480–4484

    Article  CAS  Google Scholar 

  15. Zhang JT, Cheng SX, Zhuo RX (2003) Poly(vinyl alcohol)/poly(N-isopropylacrylamide) semi-interpenetrating polymer network hydrogels with rapid response to temperature changes. Colloid Polym Sci 281:580–583

    Article  CAS  Google Scholar 

  16. Zhang JT, Bhat R, Jandt KD (2009) Temperature-sensitive PVA/PNIPAAm semi-IPN hydrogels with enhanced responsive properties. Acta Biomater 5:488–497

    Article  CAS  Google Scholar 

  17. Alvarez-Lorenzo C, Concheiro A, Dubovik AS, Grinberg NV, Burova TV, Grinberg VY (2005) Temperature-sensitive chitosan-poly(N-isopropylacrylamide) interpenetrated networks with enhanced loading capacity and controlled release properties. J Control Release 102:629–641

    Article  CAS  Google Scholar 

  18. Qiu Y, Park K (2001) Environmental-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53:321–339

    Article  CAS  Google Scholar 

  19. Sawhney AS, Pathak CP, Hubbell JA (1993) Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(alpha-hydroxy acid) diacrylate macromers. Macromolecules 26:581–587

    Article  CAS  Google Scholar 

  20. Han DK, Hubbell JA (1997) Synthesis of polymer network scaffolds from l-lactide and poly(ethylene glycol) and their interaction with cells. Macromolecules 30:6077–6083

    Article  CAS  Google Scholar 

  21. Zhao SP, Cao MJ, Li LY, Xu WL (2010) Synthesis and properties of biodegradable thermo- and pH-sensitive poly[(N-isopropylacrylamide)-co-(methacrylic acid)] hydrogels. Polym Degrad Stab 95:719–724

    Article  CAS  Google Scholar 

  22. Wang XH, Du YM, Fan LH, Liu H, Hu Y (2005) Chitosan-metal complexes as antimicrobial agent: synthesis, characterization and structure-activity study. Polym Bull 55:105–113

    Article  CAS  Google Scholar 

  23. VandeVord PJ, Matthew HW, De Silva SP, Mayton L, Wu BP, Wooley H (2002) Evaluation of the biocompatibility of a chitosan scaffold in mice. J Biomed Mater Res 59:585–590

    Article  CAS  Google Scholar 

  24. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 100:5–28

    Article  CAS  Google Scholar 

  25. Li X, Wu W, Liu W (2008) Synthesis and properties of thermo-responsive guar gum/poly(N-isopropylacrylamide) interpenetrating polymer network hydrogels. Carbohydr Polym 71:394–402

    Article  CAS  Google Scholar 

  26. Felinto MCFC, Parra DF, Silva CC, Angerami J, Oliveira MJA, Lugao AB (2007) The swelling behavior of chitosan hydrogels membranes obtained by UV- and γ-radiation. Nucl Instrum Methods Phys Res B 265:418–424

    Article  CAS  Google Scholar 

  27. Guo BL, Gao QY (2007) Preparation and properties of a pH/temperature-responsive carboxymethyl chitosan/poly(N-isopropylacrylamide) semi-IPN hydrogel for oral delivery of drugs. Carbohydr Res 342:2416–2422

    Article  CAS  Google Scholar 

  28. Chambon F, Winter HH (1985) Stopping of crosslinking reaction in a PDMS polymer at the gel point. Polym Bull 13:499–503

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was sponsored by Nature Science Foundation of Hubei Province (2007ABB033), SRF for ROCS, SEM, China, WUSE Research Fund (2008Z01) and National Basic Research Program of China (973 Program, 2009CB526402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to San-Ping Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, SP., Li, LY., Cao, MJ. et al. pH- and thermo-sensitive semi-IPN hydrogels composed of chitosan, N-isopropylacrylamide, and poly(ethylene glycol)-co-poly(ε-caprolactone) macromer for drug delivery. Polym. Bull. 66, 1075–1087 (2011). https://doi.org/10.1007/s00289-010-0390-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-010-0390-y

Keywords

Navigation