Skip to main content
Log in

Effect of alkylaluminum structure on Ziegler-Natta catalyst systems based on neodymium for producing high-cis polybutadiene

  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Summary

In this work, a laboratory scale process for producing polybutadiene with high content of cis-1,4 repeating units was studied. A Ziegler-Natta catalyst system constituted of neodymium versatate (catalyst), an alkylaluminum compound (alkylating agent and cocatalyst) and tert-butyl chloride (chlorinating agent) was used. The solvent employed was a mixture of hexane and cyclohexane (80/20 v/v). The objective of this work was to evaluate the effect of alkylaluminum structure and the influence of Al/Nd (5 to 15) molar ratio of long chain alkylaluminium compound (tri(n-hexyl)aluminum) on catalyst activity and polybutadiene characteristics. The alkylaluminum compounds employed in this study were tri(i-butyl)aluminum, tri(n-hexyl)aluminum, tri(n-octyl)aluminum and di(i-butyl)aluminum hydride. The polybutadienes molar masses obtained were strongly influenced by the alkylaluminum structure. Polymers with the highest molar masses were obtained when tri(i-butyl)aluminum, tri(n-hexyl)aluminum and tri(n-octyl)aluminum were employed. However, polymers with the highest contents of cis-1,4 units and the lowest molar masses were produced when di(i-butyl)aluminum hydride was employed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pires NMT, Ferreira AA, Lira CH, Coutinho PLA, Nicoline LF, Soares BG, Coutinho FMB (2006) J Apll Polym Sci 99:88

    Google Scholar 

  2. Kwag G, Kim P, Han S, Lee S, Choi H, Kim S (2007) J Apll Polym Sci 105:477

    Google Scholar 

  3. Rocha TCJ, Soares BG, Coutinho FMB, Costa MAS (2005) Polím: Ciênc e Tecnol 15:39

  4. Mello IL, Delpech MC, Coutinho FMB, Albino FFM (2006) J Braz Chem Soc 17:194

    Google Scholar 

  5. Quirk RP, Kells AM, Yunlu K, Cuif JP (2000) Polymer 41:5903

    Google Scholar 

  6. Rao GSS, Upadhyay VK, Jain RC (1999) J Apll Polym Sci 71:595

    Google Scholar 

  7. Rao GSS, Upadhyay VK, Jain RC (1997) Die Angew Makromol Chem 251:193

    Google Scholar 

  8. Ricci G, Italia S, Giarrusso A, Porri L (1993) J Organometal Chem 451:67

    Google Scholar 

  9. Cui L, Ba X, Teng H, Ying L, Li K, Jin Y (1998) Polym Bull 40:729

  10. Kaita S, Hou Z, Wakatsuki Y (1999) Macromolecules 32:9078

    Google Scholar 

  11. Kaita S, Yamanaka M, Horiuchi AC, Wakatsuki Y (2006) Macromolecules 39:1359

    Google Scholar 

  12. Miyazawa A, Kase T, Soga K (2000) Macromolecules 33:2796

    Google Scholar 

  13. Bonnet F, Visseaux M, Baudry DB (2004) J Organometal Chem 689:264

    Google Scholar 

  14. Dong W, Endo K, Toshio M (2003) Macromol Chem Phys 204:104

    Google Scholar 

  15. Gao W, Cui D (2008) J Am Chem Soc 130(14):4984

    Google Scholar 

  16. Wilson DJA, Jenkins DK (1992) Polym Bull 27:407

  17. Wilson DJA, Jenkins DK (1995) Polym Bull 34:257

  18. Friebe L, Nuyken O, Windisch H, Obrecht W (2002) Macromol Chem 203:1055

  19. Kwag G (2002) Macromolecules 35:4875

    Google Scholar 

  20. Friebe L, Windisch H, Nuyken O, Obrecht W (2004) J Macromol Sci Part A 41:245

    Google Scholar 

  21. Mendham J, Denney RC, Barnes JD, Thomas MJK (2000) Vogel’s Textbook of Quantitative Chemical Analysis. Prentice-Hall, New York, Chap 18, pp 386–399

  22. Allinger NL, Cava MP, Jongh DC, Johnson CR, Lebel NA, Stevens CL (1976) Organic Chemistry. Worth Publishers Inc, New York

  23. Klimpel MG, Anwander R, Tafipolsky M, Scherer W (2001) Organometallics 20:3983

    Google Scholar 

  24. Cotton FA, Wilkinson G, Murilo CA, Bochmann M (1999) Advanced Inorganic Chemistry. John Wiley & Sons Inc, New York, Chap 19, pp 1108–1129

  25. Throckmorton MC, Kaut U (1969) Gummi Kunstst 22:293

  26. Wilson DJ (1995) J Macromol Polym Sci Part A: Polym Chem 33:2505

    Google Scholar 

  27. Friebe L, Nuyken O, Obrecht W (2006) Adv Polym Sci 204:1

  28. Mazzei A (1981) Makromol Chem 4:61

  29. Kozlov VG, Sigaieva NN, Nefediev KV, Savel’eva IG, Marina NG, Monakov YB (1994) J Polym Sci: Part A: Polym Chem 32:1237

    Google Scholar 

  30. Witte J (1981) Die Angew Makromol Chem 94:119

    Google Scholar 

  31. Porri L, Ricci G, Italia S, Cabassi F (1987) Polym Commun 28:223

  32. Rocha TCJ, Coutinho FMB, Nunes DSS, Soares BG, Costa MAS, Mello IL (2005) J Applied Apll Polym Sci 98:2539

    Google Scholar 

  33. Mello IL, Coutinho FMB, Nunes DSS, Soares BG, Costa MAS, Maria LCS (2004) Eur Polym J 40:635

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rocha, T., Coutinho, F. & Soares, B. Effect of alkylaluminum structure on Ziegler-Natta catalyst systems based on neodymium for producing high-cis polybutadiene. Polym. Bull. 62, 1–10 (2009). https://doi.org/10.1007/s00289-008-1006-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-008-1006-7

Keywords

Navigation