Skip to main content
Log in

Approximating the radiatively corrected Higgs mass in the minimal supersymmetric model

  • Published:
Zeitschrift für Physik C Particles and Fields

Abstract

To obtain the most accurate predictions for the Higgs masses in the minimal supersymmetric model (MSSM), one should compute the full set of one-loop radiative corrections, resum the large logarithms to all orders, and add the dominant two-loop effects. A complete computation following this procedure yields a complex set of formulae which must be analyzed numerically. We discuss a very simple approximation scheme which includes the most important terms from each of the three components mentioned above. We estimate that the Higgs masses computed using our scheme lie within 2 GeV of their theoretically predicted values over a very large fraction of MSSM parameter space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Altarelli, T. Sjostrand and F. Zwirner (editors), Proceedings of the Workshop on Physics at LEP2, CERN Yellow Report 96-01 (1996)

    Google Scholar 

  2. See e.g. N. Cabibbo, L. Maiani, G. Parisi and R. Petronzio, Nucl. Phys. B158 (1979) 295; M. Lindner, Z. Phys. C31 (1986) 295

    Article  ADS  Google Scholar 

  3. For a recent analysis, see G. Altarelli and G. Isidori, Phys. Lett. B337 (1994) 141; J.R. Espinosa and M. Quiros, Phys. Lett. B353 (1995) 257

    Article  ADS  Google Scholar 

  4. For a comprehensive review of the MSSM Higgs sector, see chapter 4 of J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs Hunter′s Guide (Addison-Wesley, Redwood City, CA, 1990)

    Google Scholar 

  5. H.E. Haber and R. Hempfling, Phys. Rev. Lett. 66 (1991) 1815

    Article  ADS  Google Scholar 

  6. Y. Okada, M. Yamaguchi and T. Yanagida, Prog. Theor. Phys. 85 (1991) 1; J. Ellis, G. Ridolfi and F. Zwirner, Phys. Lett. B257 (1991) 83

    Article  ADS  Google Scholar 

  7. S.P. Li and M. Sher, Phys. Lett. B140 (1984) 339; A. Brignole, J. Ellis, G. Ridolfi and F. Zwirner, Phys. Lett. B271(1991) 123 [E: B273 (1991) 550]; M. Drees and M.M. Nojiri, Phys. Rev. D45 (1992) 2482; J.A. Casas, J.R. Espinosa, M. Quiros, A. Riotto, Nucl. Phys. B436 (1995) 3 [E: B439 (1995) 466]

    Article  ADS  Google Scholar 

  8. J. Ellis, G. Ridolfi and F. Zwirner, Phys. Lett. B262 (1991) 477

    Article  ADS  Google Scholar 

  9. M. Carena, J.R. Espinosa, M. Quiros, and C.E.M. Wagner, Phys. Lett. B355 (1995) 209; M. Carena, M. Quiros, and C.E.M. Wagner, Nucl. Phys. B461 (1996) 407

    Article  ADS  Google Scholar 

  10. J.F. Gunion and A. Turski, Phys. Rev. D39 (1989) 2701; Phys. Rev. D40 (1989) 2333; M.S. Berger, Phys. Rev. D41 (1990) 225; A. Brignole, Phys. Lett. B277 (1992) 313; M.A. Díaz and H.E. Haber, Phys. Rev. D46 (1992) 3086

    ADS  Google Scholar 

  11. M.A. Díaz and H.E. Haber, Phys. Rev. D45 (1992) 4246

    ADS  Google Scholar 

  12. R. Hempfling and A.H. Hoang, Phys. Lett. B331 (1994) 99

    Article  ADS  Google Scholar 

  13. P.H. Chankowski, S. Pokorski, J. Rosiek, Phys. Lett. B274 (1992) 191; Nucl. Phys. B423 (1994) 437; A. Brignole, Phys. Lett. B281 (1992) 284; A. Yamada, Phys. Lett. B263 (1991) 233; Z. Phys. C61 (1994) 247; A. Dabelstein, Z. Phys. C67 (1995) 495; D.M. Pierce, J.A. Bagger, K. Matchev and R. Zhang, Nucl. Phys. B491 (1997) 3

    Article  ADS  Google Scholar 

  14. R. Barbieri, M. Frigeni and F. Caravaglios, Phys. Lett. B258 (1991) 167; Y. Okada, M. Yamaguchi, T. Yanagida, Phys. Lett. B262 (1991) 54; D.M. Pierce, A. Papadopoulos and S. Johnson, Phys. Rev. Lett. 68 (1992) 3678. K. Sasaki, M. Carena, C.E.M. Wagner, Nucl. Phys. B381 (1992) 66; R. Hempfling, in Phenomenological Aspects of Supersymmetry, edited by W. Hollik, R. Ruckl, and J. Wess (Springer-Verlag, Berlin, 1992) p. 260; J. Kodaira, Y. Yasui, K. Sasaki, Phys. Rev. D50 (1994) 7035

    Article  ADS  Google Scholar 

  15. J.R. Espinosa and M. Quiros, Phys. Lett. B266 (1991) 389

    Article  ADS  Google Scholar 

  16. H.E. Haber and R. Hempfling, Phys. Rev. D48 (1993) 4280

    ADS  Google Scholar 

  17. M. Carena, P. Zerwas et al., “Higgs Physics,” in Report of the Higgs Physics Working Group of the LEP-2 Workshop, in Proceedings of the Workshop on Physics at LEP2, Vol. 1, G. Altarelli, T. Sjostrand and F. Zwirner (editors), CERN Yellow Report 96-01 (1996) p. 351

    Google Scholar 

  18. H.E. Haber, “Recent Refinements in Higgs Physics”, in the Proceedings of the 1995 International Europhysics Conference on High Energy Physics, 27 July–2 August 1995, Brussels, Belgium, edited by J. Lemonne, C. Vander Velde, and F. Verbeure (World Scientific, Singapore, 1996) p. 15

    Google Scholar 

  19. J.F. Gunion, A. Stange, and S. Willenbrock, in Electroweak Symmetry Breaking and New Physics at the TeV Scale, edited by T.L. Barklow, S. Dawson, H.E. Haber, and J.L. Siegrist (World Scientific, Singapore, 1996), pp. 23–145

  20. We use the formulae quoted in Appendix A of [16]. Further citations to the original literature can be found there

  21. J.-F. Grivaz, “New Particle Searches”, in the Proceedings of the 1995 International Europhysics Conference on High Energy Physics, 27 July–2 August 1995, Brussels, Belgium, edited by J. Lemonne, C. Vander Velde, and F. Verbeure (World Scientific, Singapore, 1996) p. 827

    Google Scholar 

  22. R.M. Barnett et al. [Particle Data Group], Phys. Rev. D54 (1996) 1

    ADS  Google Scholar 

  23. R. Tarrach, Nucl. Phys. B183 (1981) 384; N. Gray, D.J. Broadhurst, W. Grafe, and K. Schilcher, Z. Phys. C48 (1990) 673

    Article  ADS  Google Scholar 

  24. R. Hempfling and B.A. Kniehl, Phys. Rev. D51 (1995) 1386

    ADS  Google Scholar 

  25. A. Sirlin and R. Zucchini, Nucl. Phys. B266 (1986) 389

    Article  ADS  Google Scholar 

  26. I. Jack and H. Osborn, J. Phys. A16 (1983) 1101; M.E. Machacek and M.T. Vaughn, Nucl. Phys. B249 (1985) 70; C. Ford, I. Jack, and D.R.T. Jones, Nucl. Phys. B387 (1992) 373. For a useful compilation of two loop RGEs for the Standard Model and the MSSM, see B. Schrempp and M. Wimmer, Prog. Part. Nucl. Phys. 37 (1996) 1

    ADS  Google Scholar 

  27. H.E. Haber, Phys. Rev. D54 (1996) 687

    Google Scholar 

  28. For a recent study of color and electric charge breaking minima in the MSSM and references to earlier works, see J.A. Casas, A. Lleyda and C. Muñoz, Nucl. Phys. B471 (1996) 3

    Article  ADS  Google Scholar 

  29. R. Hempfling, in Properties of SUSY Particles, Proceedings of the 23rd Workshop of the INFN Eloisatron Project, Erice, Italy, 28 September–4 October 1992, edited by L. Cifarelli and V.A. Khoze (World Scientific, Singapore, 1993) p. 373

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haber, H.E., Hempfling, R. & Hoang, A.H. Approximating the radiatively corrected Higgs mass in the minimal supersymmetric model. Z Phys C - Particles and Fields 75, 539–554 (1997). https://doi.org/10.1007/s002880050498

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002880050498

Keywords

Navigation