Skip to main content
Log in

Vector-borne disease models with Lagrangian approach

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We develop a multi-group and multi-patch model to study the effects of population dispersal on the spatial spread of vector-borne diseases across a heterogeneous environment. The movement of host and/or vector is described by Lagrangian approach in which the origin or identity of each individual stays unchanged regardless of movement. The basic reproduction number \(\mathcal {R}_0\) of the model is defined and the strong connectivity of the host-vector network is succinctly characterized by the residence times matrices of hosts and vectors. Furthermore, the definition and criterion of the strong connectivity of general infectious disease networks are given and applied to establish the global stability of the disease-free equilibrium. The global dynamics of the model system are shown to be entirely determined by its basic reproduction number. We then obtain several biologically meaningful upper and lower bounds on the basic reproduction number which are independent or dependent of the residence times matrices. In particular, the heterogeneous mixing of hosts and vectors in a homogeneous environment always increases the basic reproduction number. There is a substantial difference on the upper bound of \(\mathcal {R}_0\) between Lagrangian and Eulerian modeling approaches. When only host movement between two patches is concerned, the subdivision of hosts (more host groups) can lead to a larger basic reproduction number. In addition, we numerically investigate the dependence of the basic reproduction number and the total number of infected hosts on the residence times matrix of hosts, and compare the impact of different vector control strategies on disease transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen LJS, Bolker BM, Lou Y, Nevai AL (2007) Asymptotic profiles of the steady states for an SIS epidemic patch model. SIAM J. Appl. Math. 67(5):1283–1309

    MathSciNet  Google Scholar 

  • Arino J (2009) Diseases in metapopulations. In: Ma Z, Zhou Y, Wu J (eds) Modeling and dynamics of infectious diseases, Ser. Contemp. Appl. Math. World Scientific, Singapore, pp 64–122

    Google Scholar 

  • Auger P, Kouokam E, Sallet G, Tchuente M, Tsanou B (2008) The Ross-Macdonald model in a patchy environment. Math. Biosci. 216:123–131

    MathSciNet  PubMed  Google Scholar 

  • Berman A, Plemmons RJ (1994) Nonnegative matrices in the mathematical sciences. SIAM, Philadelphia

    Google Scholar 

  • Bichara D, Castillo-Chavez C (2016) Vector-borne diseases models with residence times—a Lagrangian perspective. Math. Biosci. 281:128–138

    MathSciNet  PubMed  Google Scholar 

  • Bichara D, Holechek SA, Velázquez-Castro J, Murillo AL, Castillo-Chavez C (2016) On the dynamics of dengue virus type 2 with residence times and vertical transmission. Lett. Biomath. 3(1):140–160

    MathSciNet  Google Scholar 

  • Bichara D, Iggidr A (2018) Multi-patch and multi-group epidemic models: a new framework. J. Math. Biol. 77:107–134

    MathSciNet  PubMed  Google Scholar 

  • Bichara D, Iggidr A, Yacheur S (2021) Effects of heterogeneity and global dynamics of weakly connected subpopulations. Math. Model. Nat. Phenom. 16:44

    MathSciNet  Google Scholar 

  • Bichara D, Kang Y, Castillo-Chavez C, Horan R, Perrings C (2015) SIS and SIR epidemic models under virtual dispersal. Bull. Math. Biol. 77(11):2004–2034

    MathSciNet  PubMed  PubMed Central  Google Scholar 

  • Castillo-Chavez C, Bichara D, Morin BR (2016) Perspectives on the role of mobility, behavior, and time scales in the spread of diseases. Proc. Natl. Acad. Sci. U. S. A. 113(51):14582–14588

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Castillo-Chavez C, Thieme HR (1995) Asymptotically autonomous epidemic models. In: Arino O, Axelrod DE, Kimmel M, Langlais M (eds) Mathematical population dynamics: analysis of heterogeneity. Wuerz, Winnipeg, pp 33–50

    Google Scholar 

  • Chen X, Gao D (2020) Effects of travel frequency on the persistence of mosquito-borne diseases. Discrete Contin. Dyn. Syst. Ser. B 25(12):4677–4701

    MathSciNet  Google Scholar 

  • Chinazzi M, Davis JT, Ajelli M, Gioannini C, Litvinova M, Merler S, Piontti AP, Mu K, Rossi L, Sun K, Viboud C, Xiong X, Yu H, Halloran ME, Longini IM Jr, Vespignani A (2020) The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science 368(6489):395–400

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Citron DT, Guerra CA, Dolgert AJ, Wu SL, Henry JM, Sánchez HM, Smith DL (2021) Comparing metapopulation dynamics of infectious diseases under different models of human movement. Proc. Natl. Acad. Sci. U. S. A. 118(18):e2007488118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cosner C, Beier JC, Cantrell RS, Impoinvil D, Kapitanski L, Potts MD, Troyo A, Ruan S (2009) The effects of human movement on the persistence of vector-borne diseases. J. Theor. Biol. 258(4):550–560

    ADS  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  • Diekmann O, Heesterbeek JAP, Metz JAJ (1990) On the definition and the computation of the basic reproduction ratio \(R_0\) in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28(4):365–382

    MathSciNet  CAS  PubMed  Google Scholar 

  • Diekmann O, Heesterbeek JAP, Roberts MG (2010) The construction of next-generation matrices for compartmental epidemic models. J. R. Soc. Interface 7:873–885

    CAS  PubMed  Google Scholar 

  • Ducrot A, Sirima SB, Somé B, Zongo P (2009) A mathematical model for malaria involving differential susceptibility, exposedness and infectivity of human host. J. Biol. Dyn. 3(6):574–598

    MathSciNet  CAS  PubMed  Google Scholar 

  • Dye C, Hasibeder G (1986) Population dynamics of mosquito-borne disease: effects of flies which bite some people more frequently than others. Trans. R. Soc. Trop. Med. Hyg. 80(1):69–77

    CAS  PubMed  Google Scholar 

  • Gao D (2019) Travel frequency and infectious diseases. SIAM J. Appl. Math. 79(4):1581–1606

    MathSciNet  Google Scholar 

  • Gao D (2020) How does dispersal affect the infection size? SIAM J. Appl. Math. 80(5):2144–2169

    MathSciNet  Google Scholar 

  • Gao D, Cosner C, Cantrell RS, Beier JC, Ruan S (2013) Modeling the spatial spread of Rift Valley fever in Egypt. Bull. Math. Biol. 75:523–542

    MathSciNet  PubMed  PubMed Central  Google Scholar 

  • Gao D, Dong C-P (2020) Fast diffusion inhibits disease outbreaks. Proc. Am. Math. Soc. 148(4):1709–1722

    MathSciNet  Google Scholar 

  • Gao D, Lou Y, Ruan S (2014) A periodic Ross-Macdonald model in a patchy environment. Discrete Contin. Dyn. Syst. Ser. B 19(10):3133–3145

    MathSciNet  Google Scholar 

  • Gao D, Ruan S (2011) An SIS patch model with variable transmission coefficients. Math. Biosci. 232(2):110–115

    MathSciNet  PubMed  Google Scholar 

  • Gao D, van den Driessche P, Cosner C (2019) Habitat fragmentation promotes malaria persistence. J. Math. Biol. 79(6):2255–2280

    MathSciNet  PubMed  Google Scholar 

  • Gao D, Yuan X (2023) A hybrid Eulerian–Lagrangian model for vector-borne diseases, under review

  • Gatto M, Bertuzzo E, Mari L, Miccoli S, Carraro L, Casagrandi R, Rinaldo A (2020) Spread and dynamics of the COVID-19 epidemic in Italy: effects of emergency containment measures. Proc. Natl. Acad. Sci. U. S. A. 117(19):10484–10491

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Gösgens M, Hendriks T, Boon M, Steenbakkers W, Heesterbeek H, van der Hofstad R, Litvak N (2021) Trade-offs between mobility restrictions and transmission of SARS-CoV-2. J. R. Soc. Interface 18(175):20200936

    PubMed  PubMed Central  Google Scholar 

  • Hasibeder G, Dye C (1988) Population dynamics of mosquito-borne disease: persistence in a completely heterogeneous environment. Theor. Popul. Biol. 33(1):31–53

    MathSciNet  CAS  PubMed  Google Scholar 

  • Horn RA, Johnson CR (2013) Matrix analysis, 2nd edn. Cambridge University Press, New York

    Google Scholar 

  • Hsieh Y-H, van den Driessche P, Wang L (2007) Impact of travel between patches for spatial spread of disease. Bull. Math. Biol. 69(4):1355–1375

    MathSciNet  PubMed  PubMed Central  Google Scholar 

  • Iggidr A, Sallet G, Souza MO (2016) On the dynamics of a class of multi-group models for vector-borne diseases. J. Math. Anal. Appl. 441(2):723–743

    MathSciNet  Google Scholar 

  • Ikejezie J, Shapiro CN, Kim J, Chiu M, Almiron M, Ugarte C, Espinal MA, Aldighieri S (2017) Zika virus transmission-Region of the Americas, May 15, 2015-December 15, 2016. MMWR Morb. Mortal. Wkly. Rep. 66(12):329–334

    PubMed  PubMed Central  Google Scholar 

  • Lajmanovich A, Yorke JA (1976) A deterministic model for gonorrhea in a nonhomogeneous population. Math. Biosci. 28:221–236

    MathSciNet  Google Scholar 

  • Lasalle JP (1976) The stability of dynamical systems. SIAM, Philadelphia

    Google Scholar 

  • Li C-K, Schneider H (2002) Applications of Perron-Frobenius theory to population dynamics. J. Math. Biol. 44:450–462

    MathSciNet  PubMed  Google Scholar 

  • Liu M, Fu X, Zhao D (2021) Dynamical analysis of an SIS epidemic model with migration and residence time. Int. J. Biomath. 14:2150023

    MathSciNet  Google Scholar 

  • Lou Y, Wu J (2017) Modeling Lyme disease transmission. Infect. Dis. Model. 2(2):229–243

    PubMed  PubMed Central  Google Scholar 

  • Macdonald G (1957) The epidemiology and control of Malaria. Oxford University Press, London

    Google Scholar 

  • Manore CA, Hickmann KS, Xu S, Wearing HJ, Hyman JM (2014) Comparing dengue and chikungunya emergence and endemic transmission in A. aegypti and A. albopictus. J. Theor. Biol. 356:174–191

    ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

  • Mead PS (2015) Epidemiology of Lyme disease. Infect. Dis. Clin. North Am. 29(2):187–210

    PubMed  Google Scholar 

  • Misra AK, Sharma A, Shukla JB (2011) Modeling and analysis of effects of awareness programs by media on the spread of infectious diseases. Math. Comput. Model. 53:1221–1228

    MathSciNet  Google Scholar 

  • Moreno V, Espinoza B, Barley K, Paredes M, Bichara D, Mubayi A, Castillo-Chavez C (2017) The role of mobility and health disparities on the transmission dynamics of Tuberculosis. Theor. Biol. Med. Model. 14:3

    PubMed  PubMed Central  Google Scholar 

  • Moreno V, Espinoza B, Bichara D, Holechek SA, Castillo-Chavez C (2017) Role of short-term dispersal on the dynamics of Zika virus in an extreme idealized environment. Infect. Dis. Model. 2(1):21–34

    PubMed  Google Scholar 

  • Pérez-Molina JA, Molina I (2018) Chagas disease. Lancet 391(10115):82–94

    PubMed  Google Scholar 

  • Reisen WK, Wheeler SS (2019) Overwintering of West Nile Virus in the United States. J. Med. Entomol. 56(6):1498–1507

    PubMed  Google Scholar 

  • Rodríguez DJ, Torres-Sorando L (2001) Models of infectious diseases in spatially heterogeneous environments. Bull. Math. Biol. 63(3):547–571

    PubMed  Google Scholar 

  • Ross R (1911) The Prevention of Malaria. John Murray, London

    Google Scholar 

  • Ruan S, Wu J (2009) Modeling spatial spread of communicable diseases involving animal hosts. In: Cantrell S, Cosner C, Ruan S (eds) Spatial ecology. Chapman and Hall/CRC, Boca Raton, pp 293–316

    Google Scholar 

  • Ruan S, Xiao D, Beier JC (2006) On the delayed Ross-Macdonald model for malaria transmission. Bull. Math. Biol. 70(4):1098–1114

    MathSciNet  Google Scholar 

  • Ruktanonchai NW, Smith DL, De Leenheer P (2016) Parasite sources and sinks in a patched Ross-Macdonald malaria model with human and mosquito movement: Implications for control. Math. Biosci. 279:90–101

    MathSciNet  PubMed  Google Scholar 

  • Salmani M, van den Driessche P (2006) A model for disease transmission in a patchy environment. Discrete Contin. Dyn. Syst. Ser. B 6(1):185–202

    MathSciNet  Google Scholar 

  • Schneider H (1984) Theorems on \(M\)-splittings of a singular \(M\)-matrix which depend on graph structure. Linear Algebra Appl. 58:407–424

    MathSciNet  Google Scholar 

  • Shuai Z, van den Driessche P (2013) Global stability of infectious disease models using Lyapunov functions. SIAM J. Appl. Math. 73:1513–1532

    MathSciNet  Google Scholar 

  • Smith HL (1995) Monotone dynamical systems: an introduction to the theory of competitive and cooperative systems. American Mathematical Society, Providence

    Google Scholar 

  • Tang B, Wang X, Li Q, Bragazzi NL, Tang S, Xiao Y, Wu J (2020) Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions. J. Clin. Med. 9(2):462

    PubMed  PubMed Central  Google Scholar 

  • Torres-Sorando L, Rodríguez DJ (1997) Models of spatio-temporal dynamics in malaria. Ecol. Model. 104:231–240

    Google Scholar 

  • van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180:29–48

    MathSciNet  PubMed  Google Scholar 

  • Verdonschot PFM, Besse-Lototskaya AA (2014) Flight distance of mosquitoes (Culicidae): a metadata analysis to support the management of barrier zones around rewetted and newly constructed wetlands. Limnologica 45:69–79

    Google Scholar 

  • Wang X, Liu S, Wang L, Zhang W (2015) An epidemic patchy model with entry-exit screening. Bull. Math. Biol. 77(7):1237–1255

    MathSciNet  PubMed  PubMed Central  Google Scholar 

  • Wang W, Mulone G (2003) Threshold of disease transmission in a patch environment. J. Math. Anal. Appl. 285(1):321–335

    MathSciNet  Google Scholar 

  • Wang W, Zhao X-Q (2004) An epidemic model in a patchy environment. Math. Biosci. 190(1):97–112

    MathSciNet  PubMed  Google Scholar 

  • World Health Organization (2020a) Dengue and Severe Dengue, https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue

  • World Health Organization (2020b) Vector-borne Disease, https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases

  • World Health Organization (2020c) World Malaria Report 2020, https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2020

  • Wu JT, Leung K, Leung GM (2020) Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. Lancet 395(10225):689–697

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Cosner C, Zhu H (2018) Two-patch model for the spread of West Nile virus. Bull. Math. Biol. 80(4):840–863

    MathSciNet  PubMed  Google Scholar 

  • Zhao X-Q (2017) Dynamical systems in population biology, 2nd edn. Springer-Verlag, New York

    Google Scholar 

  • Zhao X-Q, Jing Z (1996) Global asymptotic behavior in some cooperative systems of functional differential equations. Can. Appl. Math. Q. 4(4):421–444

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We sincerely thank the handling editor Dr. Andrea Pugliese and anonymous reviewers for their careful reading and constructive comments, and Drs. Derdei Bichara, Yijun Lou and Lei Zhang for helpful discussions. This work was supported by the National Natural Science Foundation of China (12071300), the Natural Science Foundation of Shanghai (20ZR1440600 and 20JC1413800), and the CSU Office of Research through a startup grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daozhou Gao.

Additional information

Dedicated to Professor Chris Cosner on his 70th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Variable and notation index

Symbol

Meaning

Page

\(H_i\)

Total host population of group i

5

\(S_i^h\)

Number of susceptible hosts in group i

5

\(I_i^h\)

Number of infected hosts in group i

5

\(N_j^v\)

Total vector population of patch j

5

\(S_j^v\)

Number of susceptible vectors in group j

5

\(I_j^v\)

Number of infected vectors in group j

5

\(I_{ik}^h\)

Number of infected hosts of group i in patch k

18

\(I_{jk}^v\)

Number of infected vectors of patch j in patch k

18

\(I_{i}^{hf}\)

Number of infected hosts of group i that are frequent travelers

35

\(I_{i}^{hu}\)

Number of infected hosts of group i that are unfrequent travelers

35

\(\Omega _h\)

Set of host groups

5

\(\Omega _v\)

Set of vector patches

5

\(\Omega _v^0\)

Set of vector patches that are visited by at least one host group

5

\(\Omega _v^j\)

Set of vector patches that are visited by host group j

22

\(\Gamma \)

Positively invariant region for model (2.2)

9

\(E_0\)

Disease-free equilibrium of model (2.2)

9

\(E^*\)

Endemic equilibrium of model (2.2)

17

F

New infection matrix for model (2.2)

9

V

Transition matrix for model (2.2)

9

\(\rho \)

Spectral radius of a square matrix

9

\({\mathscr {A}}\)

Block of matrix F at position (1,2)

9

\({\mathscr {B}}\)

Block of matrix F at position (2,1)

9

\({\mathscr {C}}\)

Block of matrix V at position (1,1)

9

\({\mathscr {D}}\)

Block of matrix V at position (2,2)

9

\(\alpha _{ij}\)

The (ij)-entry of matrix \({\mathscr {A}}{\mathscr {D}}^{-1}{\mathscr {B}}{\mathscr {C}}^{-1}\)

10

\(\beta _{ij}\)

The (ij)-entry of matrix \({\mathscr {B}}{\mathscr {C}}^{-1}{\mathscr {A}}{\mathscr {D}}^{-1}\)

10

M

A Sign equivalent form of \(FV^{-1}\)

11

W

Host-vector contact matrix in terms of residence times matrices

11

\({\mathcal {G}}\)

Infectious disease network

13

\(\mathcal {R}_0\)

Basic reproduction number of model (2.2)

9

\(\mathcal {R}_0^{(k)}\)

Basic reproduction number of patch k in disconnection

18

\(\mathcal {R}_0^{[k]}\)

Basic reproduction number of patch k in isolation

19

\({\hat{\mathcal {R}}}_{ijskr}\)

Basic reproduction number that involves host groups ij and

20

 

vector patches skr, and depends on the ratio of overall

 
 

population sizes of vectors and hosts, i.e., V/H

 

\({\hat{\mathcal {R}}}_{jjskr}\)

\({\hat{\mathcal {R}}}_{ijskr}\) in the case of \(i=j\)

23

\({\hat{\mathcal {R}}}_{ijk}\)

\({\hat{\mathcal {R}}}_{ijskr}\) in the case of \(s=r=k\) (no vector movement)

31

\({\hat{\mathcal {R}}}_{jjk}\)

\({\hat{\mathcal {R}}}_{ijk}\) in the case of \(i=j\)

31

\(\mathcal {R}_0(m/n)\)

\(\mathcal {R}_0\) of model (2.2) containing m host groups and n vector patches

23

\(\mathcal {R}_{ijskr}\)

Basic reproduction number that involves host groups ij and vector

26

 

patches skr, and depends on the ratio of population sizes

 
 

of vector patch s and host group j, i.e., \(V_s/H_j\)

 

\(\mathcal {R}_{jjskr}\)

\(\mathcal {R}_{ijskr}\) in the case of \(i=j\)

28

\(\mathcal {R}_{ijk}\)

\(\mathcal {R}_{ijskr}\) in the case of \(s=r=k\) (no vector movement)

31

\(\mathcal {R}_{jjk}\)

\(\mathcal {R}_{ijk}\) in the case of \(i=j\)

31

\({\tilde{\mathcal {R}}}_{ijk}\)

Basic reproduction number that involves host group k and vector

32

 

patches ij, depends on the ratio of population sizes of vector patch

 

Symbol

Meaning

Page

 

i and host group k, i.e., \(V_i/H_k\), and has no vector movement

 

\({\tilde{\mathcal {R}}}_0^{(k)}\)

Basic reproduction number of patch k in disconnection with only

33

 

vector movement before disconnection

 

\(h_i\)

Proportion of hosts in group i, i.e., \(H_i/H\)

20

\(v_j\)

Proportion of vectors of patch j, i.e., \(V_j/V\)

20

\(p_k\)

Proportion of hosts from all host groups that commute to patch k

23

\(q_k\)

Proportion of vectors from all vector patches that commute to patch k

23

\({\hat{L}}\)

\({\mathscr {A}}{\mathscr {D}}^{-1}{\mathscr {B}}{\mathscr {C}}^{-1}\) in the case of all \({\hat{\mathcal {R}}}_{ijskr}\equiv 1\)

21

L

\({\mathscr {A}}{\mathscr {D}}^{-1}{\mathscr {B}}{\mathscr {C}}^{-1}\) in the case of all \(\mathcal {R}_{ijskr}\equiv 1\)

27

\({\tilde{A}}\)

A spectral radius equivalent form of \({\mathscr {A}}{\mathscr {D}}^{-1}{\mathscr {B}}{\mathscr {C}}^{-1}\)

51

\({\tilde{L}}\)

\({\tilde{A}}\) in the case of all \({\hat{\mathcal {R}}}_{jjskr}\equiv 1\)

51

\({\check{L}}\)

\({\mathscr {B}}{\mathscr {C}}^{-1}{\mathscr {A}}{\mathscr {D}}^{-1}\) in the case of all \({\tilde{\mathcal {R}}}_{ijk}\equiv 1\) (no vector movement)

53

Appendix B: Derivation of matrix W

  1. (1)

    The vector-borne disease considered here cannot be directly transmitted from host to host, so the (1, 1) block in Table 2 is \(0_{m\times m}\).

  2. (2)

    Suppose the hosts of group \(i~(1\le i\le m)\) spend part of time in patch \(j~(1\le j\le k)\). If an infected host of group i is introduced, then this infected host can visit patch j and infect the susceptible vectors of patch j. On the other hand, if an infected vector of patch j is introduced, then this infected vector can infect the susceptible hosts of group i who visit patch j. So, the (1, 2) and (2, 1) blocks in Table 2 are \(P_{1}\) and \(P_{1}^{\textrm{T}}\), respectively.

  3. (3)

    Since no host visits the last \(n-k\) patches, the disease transmission from the infected hosts of group \(i~(1\le i\le m)\) to the susceptible vectors of patch \(j~(k+1\le j\le n)\) in patch j cannot occur. Similarly, the disease transmission from the infected vectors of patch j to the susceptible hosts of group i in patch j is impossible. So, the (1, 3) and (3, 1) blocks in Table 2 are \(0_{m\times (n-k)}\) and \(0_{(n-k)\times m}\), respectively.

  4. (4)

    Suppose the vectors of patch \(j~(1\le j\le k)\) spend part of time in patch \(l~(1\le l\le k)\). If an infected vector of patch j is introduced, then this infected vector can visit patch l and infect the susceptible hosts in patch l (the first k patches have host visitors). The infected hosts in patch l can then infect the susceptible vectors of patch l. On the other hand, if an infected vector of patch l is introduced, then this infected vector can infect the susceptible hosts in patch l. The infected hosts in patch l can infect the susceptible vectors of patch j who visit patch l. In other words, the visit of vectors of patch j to patch l has the same transmission impact as the visit of vectors of patch l to patch j. So, the (2, 2) block in Table 2 is \(Q_1+Q_1^{\textrm{T}}\).

  5. (5)

    Suppose the vectors of patch \(l~(k+1\le l\le n)\) spend part of time in patch \(j~(1\le j\le k)\). If an infected vector of patch l is introduced, then this infected vector can visit patch j and infect the susceptible hosts in patch j (the first k patches have host visitors). The infected hosts in patch j can then infect the susceptible vectors of patch j. On the other hand, if an infected vector of patch j is introduced, then this infected vector can infect the susceptible hosts in patch j. The infected hosts in patch j can infect the susceptible vectors of patch l who visit patch j. Since the last \(n-k\) patches are host-free, the visit of the vectors of the first k patches to the last \(n-k\) patches does not cause disease transmission. So, the (3, 2) and (2, 3) blocks in Table 2 are \(Q_2\) and \(Q_2^{\textrm{T}}\), respectively.

  6. (6)

    The last \(n-k\) patches are host-free, so the movement of the vectors of the last \(n-k\) patches between the last \(n-k\) patches produces no infection. So, the (3, 3) block in Table 2 is \(0_{(n-k)\times (n-k)}\).

Appendix C: Proof of Theorem 3.2

Proof

Necessity. It follows from the nonnegativity of matrices \(P_1\), \(Q_1\), and \(Q_2\) that

$$\begin{aligned} \begin{aligned} W^{2}&= \begin{pmatrix} P_{1}P_{1}^{\textrm{T}} &{}\quad P_{1}(Q_{1}+Q_{1}^{\textrm{T}}) &{}\quad P_{1}Q_{2}^{\textrm{T}} \\ (Q_{1}+Q_{1}^{\textrm{T}})P_{1}^{\textrm{T}} &{}\quad P_{1}^{\textrm{T}}P_{1}+\left( Q_{1}+Q_{1}^{\textrm{T}}\right) ^{2}+Q_{2}^{\textrm{T}}Q_{2} &{}\quad (Q_{1}+Q_{1}^{\textrm{T}})Q_{2}^{\textrm{T}} \\ Q_{2}P_{1}^{\textrm{T}} &{}\quad Q_{2}(Q_{1}+Q_{1}^{\textrm{T}}) &{} \quad Q_{2}Q_{2}^{\textrm{T}} \end{pmatrix}\\&\quad \ge \begin{pmatrix} 0 &{}\quad P_{1}Q_{1}^{\textrm{T}} &{}\quad P_{1}Q_{2}^{\textrm{T}} \\ Q_{1}P_{1}^{\textrm{T}} &{}\quad 0 &{}\quad 0 \\ Q_{2}P_{1}^{\textrm{T}} &{}\quad 0 &{} \quad 0 \end{pmatrix} =M\ge 0. \end{aligned} \end{aligned}$$

Thus, the irreducibility of the matrix M implies the irreducibility of the matrix \(W^2\). Hence W is also irreducible. Suppose not, i.e., W is reducible, then there exists a permutation matrix S such that

$$\begin{aligned} \begin{aligned} S^{\textrm{T}}WS= \begin{pmatrix} {\tilde{W}}_1 &{} \quad {\tilde{W}}_3 \\ 0 &{}\quad {\tilde{W}}_2 \end{pmatrix}, \end{aligned} \end{aligned}$$

and hence

$$\begin{aligned} \begin{aligned} S^{\textrm{T}}W^2S= \begin{pmatrix} {\tilde{W}}_1^2 &{}\quad {\tilde{W}}_1{\tilde{W}}_3+{\tilde{W}}_3{\tilde{W}}_2 \\ 0 &{}\quad {\tilde{W}}_2^2 \end{pmatrix}. \end{aligned} \end{aligned}$$

Therefore \(W^2\) is reducible, a contradiction.

Sufficiency. Suppose that the matrix W is irreducible, then the directed graph generated by W, denoted by \({\mathcal {G}}(W)\), is strongly connected (Horn and Johnson 2013). We write the sets of nodes of the directed graphs \({\mathcal {G}}(W)\) and \({\mathcal {G}}(M)\) as

$$\begin{aligned} \{W_{1},\dots ,W_{m},\,W_{m+1},\dots ,W_{m+n}\}\ \text{ and } \ \{M_{1},\dots ,M_{m},\,M_{m+1},\dots ,M_{m+n}\}, \end{aligned}$$

respectively. Denote \(W=(w_{ij})_{(m+n)\times (m+n)}\) and \(M=(m_{ij})_{(m+n)\times (m+n)}\), where

$$\begin{aligned} w_{ij}= {\left\{ \begin{array}{ll} p_{i,j-m}, &{} 1\le i\le m,\;m+1\le j\le m+k, \\ p_{j,i-m}, &{} m+1\le i\le m+k,\;1\le j\le m, \\ q_{i-m,j-m}+q_{j-m,i-m}, &{} m+1\le i,\,j\le m+k, \\ q_{i-m,j-m}, &{} m+k+1\le i\le m+n,\;m+1\le j\le m+k, \\ q_{j-m,i-m}, &{} m+1\le i\le m+k,\;m+k+1\le j\le m+n, \\ 0, &{} \text{ otherwise }, \end{array}\right. }\nonumber \\ \end{aligned}$$
(C.1)

and

$$\begin{aligned} m_{ij}={\left\{ \begin{array}{ll} \sum \limits _{r=1}^{k}p_{ir}q_{j-m,r}, &{} 1\le i\le m,\;m+1\le j\le m+n, \\ \sum \limits _{r=1}^{k}p_{jr}q_{i-m,r}, &{} m+1\le i\le m+n,\;1\le j\le m, \\ 0, &{} \text{ otherwise }. \end{array}\right. } \end{aligned}$$
(C.2)

Based on the symmetry of matrices W and M, and the number of nonzero blocks in matrix W, we have three parts to show that: if there is a directed path between a given pair of nodes of graph \({\mathcal {G}}(W)\), then there is also a directed path between the corresponding pair of nodes of graph \({\mathcal {G}}(M)\). Therefore, the strong connectivity of \({\mathcal {G}}(W)\) implies the strong connectivity of \({\mathcal {G}}(M)\).

  1. (1)

    Consider the (1, 2) block (or called submatrix) of the block (or called partitioned) matrix W. Suppose \(p_{lj}>0\) for some \(l\in \{1,\dots ,m\}\) and \(j\in \{1,\dots ,k\}\). It follows from (C.1) and the symmetry of W that

    $$\begin{aligned} w_{l,m+j}=w_{m+j,l}=p_{lj}>0. \end{aligned}$$

    So, there is a bidirectional edge connecting nodes \(W_{l}\) and \(W_{m+j}\) of graph \({\mathcal {G}}(W)\). Meanwhile, it follows from (C.2), the symmetry of M and

    $$\begin{aligned} p_{lj}>0\ \text{ and } \ q_{jj}>0, \end{aligned}$$

    that

    $$\begin{aligned} m_{l,m+j}=m_{m+j,l}=\sum \limits _{r=1}^{k}p_{lr}q_{jr}\ge p_{lj}q_{jj}>0. \end{aligned}$$

    Hence, there is also a bidirectional edge connecting nodes \(M_{l}\) and \(M_{m+j}\) of graph \({\mathcal {G}}(M)\).

  2. (2)

    Consider the (2, 2) block of W. Suppose \(q_{sj}>0\) for some \(s,\,j\in \{1,\dots ,k\}\), then

    $$\begin{aligned} w_{m+s,m+j}=w_{m+j,m+s}=q_{sj}+q_{js}\ge q_{sj}>0. \end{aligned}$$

    So, there is a bidirectional edge connecting nodes \(W_{m+s}\) and \(W_{m+j}\) of \({\mathcal {G}}(W)\). Since at least one host group visits patch j, there exists some \(i\in \{1,\dots ,m\}\) such that \(p_{ij}>0\), which means that

    $$\begin{aligned} m_{i,m+s}=m_{m+s,i}=\sum \limits _{r=1}^{k}p_{ir}q_{sr}\ge p_{ij}q_{sj}>0. \end{aligned}$$

    So, the nodes \(M_{i}\) and \(M_{m+s}\) of \({\mathcal {G}}(M)\) are connected by a bidirectional edge. Moreover, it follows from (C.2), the symmetry of M and

    $$\begin{aligned} p_{ij}>0\;\; \text{ and } \;\; q_{jj}>0, \end{aligned}$$

    that

    $$\begin{aligned} m_{i,m+j}=m_{m+j,i}=\sum \limits _{r=1}^{k}p_{ir}q_{jr}\ge p_{ij}q_{jj}>0. \end{aligned}$$

    So, the nodes \(M_{i}\) and \(M_{m+j}\) of \({\mathcal {G}}(M)\) are also connected by a bidirectional edge. Thus, there is a bidirectional path passing nodes \(M_{m+s}\) and \(M_{m+j}\) of \({\mathcal {G}}(M)\).

  3. (3)

    Consider the (3, 2) block of W. Suppose \(q_{cj}>0\) for some \(c\in \{k+1,\dots ,n\}\) and \(j\in \{1,\dots ,k\}\), then

    $$\begin{aligned} w_{m+c,m+j}=w_{m+j,m+c}=q_{cj}>0. \end{aligned}$$

    So, there is a bidirectional edge connecting nodes \(W_{m+c}\) and \(W_{m+j}\) of graph \({\mathcal {G}}(W)\). Similarly, there exists some \(i\in \{1,\dots ,m\}\) such that \(p_{ij}>0\), which implies that

    $$\begin{aligned} m_{i,m+c}=m_{m+c,i}=\sum \limits _{r=1}^{k}p_{ir}q_{cr}\ge p_{ij}q_{cj}>0. \end{aligned}$$

    So, the nodes \(M_{i}\) and \(M_{m+c}\) of graph \({\mathcal {G}}(M)\) are connected by a bidirectional edge. Moreover, it again follows from (C.2), the symmetry of M and

    $$\begin{aligned} p_{ij}>0\ \text{ and } \ q_{jj}>0, \end{aligned}$$

    that

    $$\begin{aligned} m_{i,m+j}=m_{m+j,i}=\sum \limits _{r=1}^{k}p_{ir}q_{jr}\ge p_{ij}q_{jj}>0. \end{aligned}$$

    There is a bidirectional edge connecting nodes \(M_{i}\) and \(M_{m+j}\) of graph \({\mathcal {G}}(M)\). Thus, the nodes \(M_{m+c}\) and \(M_{m+j}\) of graph \({\mathcal {G}}(M)\) are connected by a bidirectional path.

In conclusion, if the directed graph \({\mathcal {G}}(W)\) is strongly connected, then the directed graph \({\mathcal {G}}(M)\) is also strongly connected. So, the matrix M is irreducible. \(\square \)

Appendix D: Proof of Theorem 3.13

Proof

Let \({\varvec{f}}=(f_{1},\dots ,f_{m+n})\) be the vector field generated by (2.2) and \(\phi _t\) the associated semiflow. We rewrite the model system (2.2) as \({\varvec{x}}'={\varvec{f}}({\varvec{x}})\), where

$$\begin{aligned} \begin{aligned} {\varvec{x}}=(x_{1},\dots ,x_{m+n})=(I_{1}^{h},\,\dots ,\,I_{m}^{h},\,I_{1}^{v},\,\dots ,\,I_{n}^{v}). \end{aligned} \end{aligned}$$

By Proposition 2.2, it suffices to consider system (2.2) in the positively invariant set \(\Gamma \). We complete the proof by verifying the conditions of Corollary 3.2 in Zhao and Jing (1996).

  1. (1)

    Direct calculation yields the Jacobian matrix of system (2.2) at \({\varvec{x}}\), denoted by

    $$\begin{aligned} D{\varvec{f}}({\varvec{x}})=\left( \frac{\partial f_{s}}{\partial x_{r}}\right) _{(m+n)\times (m+n)}, \end{aligned}$$

    where

    $$\begin{aligned} \frac{\partial f_{s}}{\partial x_{r}}= {\left\{ \begin{array}{ll} -b_{s}\sum \limits _{k\in \Omega _{v}^{0}}a_{k}\dfrac{\sum _{j\in \Omega _{v}}q_{jk}I_{j}^{v}}{\sum _{l\in \Omega _{h}}p_{lk}H_{l}}\,p_{sk}- \left( \gamma _{s}+\mu _{s}^{h}\right) , &{} 1\le s=r\le m, \\ b_{s}\left( H_{s}-I_{s}^{h}\right) \sum \limits _{k\in \Omega _{v}^{0}}a_{k}\dfrac{p_{sk}q_{r-m,k}}{\sum _{l\in \Omega _{h}}p_{lk}H_{l}}, &{} 1\le s\le m,\;m+1\le r\le m+n, \\ c_{r}\left( V_{s-m}-I_{s-m}^{v}\right) \sum \limits _{k\in \Omega _{v}^{0}}a_{k}\dfrac{q_{s-m,k}p_{rk}}{\sum _{l\in \Omega _{h}}p_{lk}H_{l}}, &{} m+1\le s\le m+n,\;1\le r\le m, \\ -\sum \limits _{k\in \Omega _{v}^{0}}a_{k}\dfrac{\sum _{i\in \Omega _{h}}c_{i}p_{ik}I_{i}^{h}}{\sum _{l\in \Omega _{h}}p_{lk}H_{l}}\,q_{s-m,k}-\mu _{s-m}^{v}, &{} m+1\le s=r\le m+n,\\ 0, &{} \text{ otherwise }. \end{array}\right. } \end{aligned}$$

    Clearly, the matrix \(D\varvec{f}(\varvec{x})\) is quasi-positive (or called essentially nonnegative) on \(\Gamma \). So, system (2.2) is cooperative on \(\Gamma \). The strong connectivity of the host-vector network implies that \(D\varvec{f}(\varvec{0})=F-V\) is irreducible. It follows that \(D\varvec{f}(\varvec{x})\) is irreducible in \(\mathring{\Gamma }\), the interior of \(\Gamma \). Moreover, any nonzero solution starting at the boundary of \(\Gamma \) will immediately enter and stay in \(\mathring{\Gamma }\).

  2. (2)

    Clearly, \({\varvec{f}}({\varvec{0}})={\varvec{0}}\), and \(f_{i}({\varvec{x}})\ge 0\) for all \({\varvec{x}}\in \Gamma \) with \(x_i=0\), \(i=1,\dots ,m+n\). Meanwhile, \(f_{i}(\varvec{x})=-(\gamma _i+\mu _i^h)H_i<0\) for all \({\varvec{x}}\in \Gamma \) with \(x_i=H_i\), \(i=1,\dots ,m\), and \(f_{i}(\varvec{x})=-\mu _{i-m}^vV_{i-m}<0\) for all \({\varvec{x}}\in \Gamma \) with \(x_i=V_{i-m}\), \(i=m+1,\dots ,m+n\).

  3. (3)

    For any \(\xi \in (0,1)\) and \({\varvec{x}}\in \Gamma \) with \({\varvec{x}}\gg \varvec{0}\), we have

    $$\begin{aligned} \begin{aligned} f_{i}(\xi {\varvec{x}})-\xi f_{i}({\varvec{x}}) =\xi \,(1-\xi )\,b_{i}\sum _{k\in \Omega _{v}^{0}}a_{k}\frac{\sum _{j\in \Omega _{v}}q_{jk}I_{j}^{v}}{\sum _{l\in \Omega _{h}}p_{lk}H_{l}}\,p_{ik}\,I_{i}^{h}>0, \quad i\in \Omega _{h}, \end{aligned} \end{aligned}$$

    and

    $$\begin{aligned} \begin{aligned} f_{m+j}(\xi {\varvec{x}})-\xi f_{m+j}({\varvec{x}}) =\xi \,(1-\xi )\, \sum _{k\in \Omega _{v}^{0}}a_{k}\frac{\sum _{i\in \Omega _{h}}c_{i}p_{ik}I_{i}^{h}}{\sum _{l\in \Omega _{h}}p_{lk}H_{l}}\,q_{jk}\, I_{j}^{v}>0, \quad j\in \Omega _{v}. \end{aligned} \end{aligned}$$

    Hence, \({\varvec{f}}\) is strictly sublinear on \(\Gamma \).

It follows from Theorem 2 in van den Driessche and Watmough (2002) or Theorem A.1 in Diekmann et al. (2010) that

$$\begin{aligned} s(D{\varvec{f}}(\varvec{0}))=s(F-V)>(=,<)\ 0\ \Leftrightarrow \ \mathcal {R}_0>(=,<)\ 1. \end{aligned}$$

By Corollary 3.2 in Zhao and Jing (1996), the global asymptotic stability of system (2.2) is proved. Moreover, the strong monotonicity of \(\phi _t\) implies that the unique endemic equilibrium satisfies \(\varvec{0}\ll E^*\ll (H_1,\dots ,H_m,V_1,\dots ,V_n)\). \(\square \)

Appendix E: Proof of Theorem 4.2

Proof

According to (3.1) and (3.2a), we have

$$\begin{aligned} \begin{aligned}&{\mathscr {A}}{\mathscr {D}}^{-1}{\mathscr {B}}{\mathscr {C}}^{-1}=(\alpha _{ij})_{m\times m} \\&\quad =\mathop {\textrm{diag}}\{b_1H_1,\ldots ,b_mH_m\} \\&\quad \cdot \left( \frac{c_j}{\gamma _j+\mu _j^h} \cdot \sum \limits _{s\in \Omega _v} \frac{V_s}{\mu _s^v} \left( \sum \limits _{k\in \Omega _v^0} a_k \, \frac{p_{ik}q_{sk}}{\sum _{l\in \Omega _h}p_{lk}H_l}\right) \left( \sum \limits _{r\in \Omega _v^0} a_r \, \frac{p_{jr}q_{sr}}{\sum _{l\in \Omega _h}p_{lr}H_l}\right) \right) _{m\times m}. \end{aligned} \end{aligned}$$

Define

$$\begin{aligned} \begin{aligned} {\tilde{A}}&=\left( \frac{c_j}{\gamma _j+\mu _j^h} \cdot \sum \limits _{s\in \Omega _v} \frac{V_s}{\mu _s^v} \left( \sum \limits _{k\in \Omega _v^0} a_k \, \frac{p_{ik}q_{sk}}{\sum _{l\in \Omega _h}p_{lk}H_l}\right) \left( \sum \limits _{r\in \Omega _v^0} a_r \, \frac{p_{jr}q_{sr}}{\sum _{l\in \Omega _h}p_{lr}H_l}\right) \right) _{m\times m}\\&\quad \cdot \mathop {\textrm{diag}}\{b_1H_1,\ldots ,b_mH_m\}\\&=\left( \frac{b_j c_j H_j}{\gamma _j+\mu _j^h} \cdot \sum \limits _{s\in \Omega _v} \frac{V_s}{\mu _s^v} \left( \sum \limits _{k\in \Omega _v^0} a_k \, \frac{p_{ik}q_{sk}}{\sum _{l\in \Omega _h}p_{lk}H_l}\right) \left( \sum \limits _{r\in \Omega _v^0} a_r \, \frac{p_{jr}q_{sr}}{\sum _{l\in \Omega _h}p_{lr}H_l}\right) \right) _{m\times m}\\&=\left( h_j \sum \limits _{s\in \Omega _v} v_s \left( \sum \limits _{k\in \Omega _v^0}\sum \limits _{r\in \Omega _v^0}\left( \frac{a_k a_r b_j c_j V}{\mu _s^v(\gamma _j+\mu _j^h)H}\cdot \frac{p_{ik}q_{sk}}{\sum _{l\in \Omega _h}p_{lk}h_l}\cdot \frac{p_{jr}q_{sr}}{\sum _{l\in \Omega _h}p_{lr}h_l}\right) \right) \right) _{m\times m}. \end{aligned} \end{aligned}$$

Clearly, the matrices \({\tilde{A}}\) and \({\mathscr {A}}{\mathscr {D}}^{-1}{\mathscr {B}}{\mathscr {C}}^{-1}\) have the same spectral radius. Denote

$$\begin{aligned} {\tilde{L}}=\left( h_j \sum \limits _{s\in \Omega _v} v_s \left( \sum \limits _{k\in \Omega _v^0}\frac{p_{ik}q_{sk}}{\sum _{l\in \Omega _h}p_{lk}h_l}\right) \left( \sum \limits _{r\in \Omega _v^0}\frac{p_{jr}q_{sr}}{\sum _{l\in \Omega _h}p_{lr}h_l}\right) \right) _{m\times m}. \end{aligned}$$

So,

$$\begin{aligned} \min \limits _{\begin{array}{c} {j\in \Omega _h}\\ {s,k,r\in \Omega _v} \end{array}} \left( {\hat{\mathcal {R}}}_{jjskr}\right) ^2 {\tilde{L}}\le {\tilde{A}} \le \max \limits _{\begin{array}{c} {j\in \Omega _h}\\ {s,k,r\in \Omega _v} \end{array}} \left( {\hat{\mathcal {R}}}_{jjskr}\right) ^2 {\tilde{L}}, \end{aligned}$$

which implies that

$$\begin{aligned}{} & {} \min \limits _{\begin{array}{c} {j\in \Omega _h}\\ {s,k,r\in \Omega _v} \end{array}} {\hat{\mathcal {R}}}_{jjskr} \sqrt{\rho \left( {\tilde{L}}\right) }\le \sqrt{\rho \left( {\tilde{A}}\right) }=\sqrt{\rho ({\mathscr {A}}{\mathscr {D}}^{-1}{\mathscr {B}}{\mathscr {C}}^{-1})}=\mathcal {R}_0\\{} & {} \quad \le \max \limits _{\begin{array}{c} {j\in \Omega _h}\\ {s,k,r\in \Omega _v} \end{array}} {\hat{\mathcal {R}}}_{jjskr} \sqrt{\rho \left( {\tilde{L}}\right) }. \end{aligned}$$

Notice that \({\hat{L}}^{\textrm{T}}={\tilde{L}}\), so it follows from the estimates of \(\rho ({\tilde{L}})\) in the proof of Theorem 4.1 that this theorem is proved. \(\square \)

Appendix F: Proof of Theorem 4.9

Proof

The proof of Theorem 4.2 indicates that \(\mathcal {R}_0=\sqrt{\rho ({\tilde{A}})}\) where

$$\begin{aligned} \begin{aligned} {\tilde{A}}&=\left( H_j^2 \sum \limits _{s\in \Omega _v}\sum \limits _{k\in \Omega _v^0} \sum \limits _{r\in \Omega _v^0}\left( \frac{a_ka_rb_jc_jV_s}{\mu _s^v(\gamma _j+\mu _j^h)H_j} \cdot \frac{p_{ik}q_{sk}}{\sum _{l\in \Omega _h}p_{lk}H_l} \cdot \frac{p_{jr}q_{sr}}{\sum _{l\in \Omega _h}p_{lr}H_l} \right) \right) _{m\times m}. \end{aligned} \end{aligned}$$

Denote

$$\begin{aligned} U=\left( H_j^2 \sum \limits _{s\in \Omega _v}\left( \sum \limits _{k\in \Omega _v^0}\frac{p_{ik}q_{sk}}{\sum _{l\in \Omega _h}p_{lk}H_l}\right) \left( \sum \limits _{r\in \Omega _v^0}\frac{p_{jr}q_{sr}}{\sum _{l\in \Omega _h}p_{lr}H_l}\right) \right) _{m\times m}, \end{aligned}$$

then

$$\begin{aligned} \min \limits _{\begin{array}{c} {j\in \Omega _h}\\ {s,k,r\in \Omega _v} \end{array}} \mathcal {R}_{jjskr}\,\sqrt{\rho (U)} \le \sqrt{\rho \left( {\tilde{A}}\right) } =\mathcal {R}_{0} \le \max \limits _{\begin{array}{c} {j\in \Omega _h}\\ {s,k,r\in \Omega _v} \end{array}} \mathcal {R}_{jjskr}\,\sqrt{\rho (U)}. \end{aligned}$$

Define \({\hat{S}}=\mathop {\textrm{diag}}\{H_1,\ldots ,H_m\}\). A similarity transformation finds \({\hat{S}}U{\hat{S}}^{-1}=L\) and hence \(\rho (U)=\rho (L)\). The proof is complete by using the estimates on \(\rho (L)\) in Theorem 4.7. \(\square \)

Appendix G: Proof of Theorem 4.12

Proof

It follows from (4.11b) that \({\mathscr {B}}{\mathscr {C}}^{-1}{\mathscr {A}}{\mathscr {D}}^{-1} =(\beta _{ij})_{n\times n}\) where

$$\begin{aligned} \begin{aligned} \beta _{ij}&=\sum \limits _{k\in \Omega _{h}} \left( \frac{a_i\,a_j\,b_k\,c_k V_i}{\mu _{j}^{v}\left( \gamma _{k}+\mu _{k}^{h}\right) H_{k}} \cdot \frac{p_{ki}\,p_{kj}\,H_{k}^{2}}{\sum _{l\in \Omega _{h}}p_{li}H_{l} \cdot \sum _{l\in \Omega _{h}}p_{lj}H_{l}}\right) . \end{aligned} \end{aligned}$$

Define

$$\begin{aligned} {\check{L}}=\left( {\check{l}}_{ij}\right) _{n\times n}= \left( \sum \limits _{k\in \Omega _{h}}\frac{p_{ki}\,p_{kj}\,H_{k}^{2}}{\sum _{l\in \Omega _{h}}p_{li}H_{l} \cdot \sum _{l\in \Omega _{h}}p_{lj}H_{l}}\right) _{n\times n}. \end{aligned}$$

Clearly,

$$\begin{aligned} \begin{aligned} \min \limits _{i,j,k}{\tilde{\mathcal {R}}}_{ijk}\,\sqrt{\rho \left( {\check{L}}\right) }\le \rho ({\mathscr {B}}{\mathscr {C}}^{-1}{\mathscr {A}}{\mathscr {D}}^{-1})=\mathcal {R}_{0}\le \max \limits _{i,j,k}{\tilde{\mathcal {R}}}_{ijk}\,\sqrt{\rho \left( {\check{L}}\right) }. \end{aligned} \end{aligned}$$

It follows from Corollary 8.1.29 in Horn and Johnson (2013) that

$$\begin{aligned} \begin{aligned} \sum _{i\in \Omega _v}{\check{l}}_{ij}&=\sum _{i\in \Omega _v} \sum \limits _{k\in \Omega _{h}}\left( \frac{p_{ki}H_{k}}{\sum _{l\in \Omega _{h}}p_{li}H_{l}} \cdot \frac{p_{kj}H_{k}}{\sum _{l\in \Omega _{h}}p_{lj}H_{l}}\right) \\&\le \sum _{i\in \Omega _v} \sum \limits _{k\in \Omega _{h}}\frac{p_{ki}H_{k}}{\sum _{l\in \Omega _{h}}p_{li}H_{l}} =\sum _{i\in \Omega _v}\frac{\sum _{k\in \Omega _{h}}p_{ki}H_{k}}{\sum _{l\in \Omega _{h}}p_{li}H_{l}} =n, \quad \forall \; j\in \Omega _{v}, \end{aligned} \end{aligned}$$

implies that \(\rho ({\check{L}})\le n\). So the upper bound of \(\mathcal {R}_0\) is proved.

On the other hand, since \({\check{L}}\) is a real symmetric matrix, the Rayleigh quotient theorem (Horn and Johnson 2013) gives

$$\begin{aligned} \rho \left( {\check{L}}\right) =\max \left\{ \sum \limits _{i,j\in \Omega _{v}}{\check{l}}_{ij}\, {\check{x}}_{i}\,{\check{x}}_{j} \ \bigg |\ ({\check{x}}_1,\,\dots ,\,{\check{x}}_n)\in {\mathbb {R}}^n\ \text{ and } \ \sum _{i\in \Omega _{v}}{\check{x}}_{i}^{2}=1\right\} . \end{aligned}$$

Choosing \({\check{x}}_{i}=1/\sqrt{n}\) for all \(i\in \Omega _{v}\) and applying the Cauchy–Schwarz inequality yield

$$\begin{aligned} \begin{aligned} \rho \left( {\check{L}}\right)&\ge \sum \limits _{i,j\in \Omega _{v}}{\check{l}}_{ij}\,{\check{x}}_{i}\,{\check{x}}_{j} =\frac{1}{mn}\sum _{k\in \Omega _h}1^2\cdot \sum \limits _{k\in \Omega _{h}} \left( \sum \limits _{i\in \Omega _{v}}\frac{p_{ki}H_{k}}{\sum _{l\in \Omega _{h}}p_{li}H_{l}}\right) ^{2}\\&\ge \dfrac{1}{mn} \left( \sum \limits _{k\in \Omega _{h}}\left( 1\cdot \sum \limits _{i\in \Omega _{v}} \frac{p_{ki}H_{k}}{\sum _{l\in \Omega _{h}}p_{li}H_{l}}\right) \right) ^{2} =\dfrac{1}{mn} \left( \sum \limits _{i\in \Omega _{v}}\frac{\sum _{k\in \Omega _{h}}p_{ki}H_{k}}{\sum _{l\in \Omega _{h}}p_{li}H_{l}}\right) ^{2} =\dfrac{n}{m}. \end{aligned} \end{aligned}$$

So, we have \(\rho \left( {\check{L}}\right) \ge n/m\) and the proof is complete. \(\square \)

Appendix H: Proof of Theorem 4.16

Proof

Using the next generation matrix method (Diekmann et al. 1990; van den Driessche and Watmough 2002), the basic reproduction numbers of models (4.13) and (4.14) are

$$\begin{aligned} \begin{aligned} \mathcal {R}_{1}=\sqrt{\rho \left( {\mathscr {B}}_{1}{\mathscr {C}}_{1}^{-1}{\mathscr {A}}_{1}{\mathscr {D}}_{1}^{-1}\right) } \ \text{ and } \ \mathcal {R}_{2}=\sqrt{\rho \left( {\mathscr {B}}_{2}{\mathscr {C}}_{2}^{-1}{\mathscr {A}}_{2}{\mathscr {D}}_{2}^{-1}\right) }, \end{aligned} \end{aligned}$$

respectively, where

$$\begin{aligned} \begin{aligned} {\mathscr {B}}_{1}{\mathscr {C}}_{1}^{-1}{\mathscr {A}}_{1}{\mathscr {D}}_{1}^{-1}&= ({\tilde{\beta }}_{ij})_{2\times 2}=\left( \frac{a_ia_jV_i}{\mu _j^v\Psi _i\Psi _j}\sum _{k\in \Omega } \frac{b_kc_k(p_{ki}^fp_{kj}^fH_k^f+p_{ki}^up_{kj}^uH_k^u)}{\gamma _k+\mu _k^h}\right) _{2\times 2}, \\ {\mathscr {B}}_{2}{\mathscr {C}}_{2}^{-1}{\mathscr {A}}_{2}{\mathscr {D}}_{2}^{-1}&= (\beta _{ij})_{2\times 2}=\left( \frac{a_ia_jV_i}{\mu _j^v\Psi _i\Psi _j}\sum _{k\in \Omega } \frac{b_kc_kp_{ki}p_{kj}H_k}{\gamma _k+\mu _k^h}\right) _{2\times 2}. \end{aligned} \end{aligned}$$

Clearly,

$$\begin{aligned} \begin{aligned} (\mathcal {R}_{1})^2=\frac{C_{1}+\sqrt{C_{1}^{2}-4D_{1}}}{2}\ \text{ and } \ (\mathcal {R}_{2})^{2}=\frac{C_{2}+\sqrt{C_{2}^{2}-4D_{2}}}{2}, \end{aligned} \end{aligned}$$

where \(C_i\) and \(D_i\) are the trace and determinant of matrix \({\mathscr {B}}_{i}{\mathscr {C}}_{i}^{-1}{\mathscr {A}}_{i}{\mathscr {D}}_{i}^{-1}\), respectively.

The inequality \(\mathcal {R}_{1}\ge \mathcal {R}_{2}\) is equivalent to

$$\begin{aligned} C_{1}-C_{2}\ge \sqrt{C_{2}^{2}-4D_{2}}-\sqrt{C_{1}^{2}-4D_{1}}. \end{aligned}$$

According to Theorem 3.9 in Gao (2019) or Theorem 3.3 in Chen and Gao (2020), it suffices to show that

$$\begin{aligned} C_1-C_2\ge 0\ \text{ and } \ \left( C_{1}-C_{2}\right) \left( C_{2}D_{1}-C_{1}D_{2}\right) \ge \left( D_{1}-D_{2}\right) ^{2}. \end{aligned}$$

A straightforward but tedious algebraic calculation gives

$$\begin{aligned} \begin{aligned} C_1-C_2&=\sum _{i\in \Omega }\frac{a_i^2V_i}{\mu _i^v\Psi _i^2} \sum _{k\in \Omega }\frac{b_kc_k(p_{ki}^f-p_{ki}^u)^2H_k^fH_k^u}{(\gamma _k+\mu _k^h)H_k}\ge 0, \end{aligned} \end{aligned}$$

with equality if and only if \(P^f=P^u\), and

$$\begin{aligned} \begin{aligned}&\left( C_{1}-C_{2}\right) \left( C_{2}D_{1}-C_{1}D_{2}\right) -\left( D_{1}-D_{2}\right) ^{2} =\left( \frac{K_1K_2a_1a_2}{H_1H_2\Psi _1\Psi _2}\right) ^2\cdot \frac{V_1V_2}{\mu _1^v\mu _2^v}\ge 0, \end{aligned} \end{aligned}$$

with equality if and only if \(K_1=0\) or \(K_2=0\), i.e., \(\mathcal {R}_1^{(1)}=\mathcal {R}_1^{(2)}\) or \(P^f=P^u\), where

$$\begin{aligned} \begin{aligned} K_1=(\mathcal {R}_1^{(1)})^2-(\mathcal {R}_1^{(2)})^2\ \ \text{ and } \ \ K_2=\sum _{\begin{array}{c} {i,j\in \Omega }\\ {i\ne j} \end{array}} \frac{b_ic_i}{\gamma _i+\mu _i^h}H_i^fH_i^u(p_{ii}^f-p_{ii}^u)^2H_j. \end{aligned} \end{aligned}$$

Consequently, \(\mathcal {R}_{1}\ge \mathcal {R}_{2}\) with equality if and only if \(\mathcal {R}_1^{(1)}=\mathcal {R}_1^{(2)}\) or \(P^f=P^u\). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, D., Cao, L. Vector-borne disease models with Lagrangian approach. J. Math. Biol. 88, 22 (2024). https://doi.org/10.1007/s00285-023-02044-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00285-023-02044-x

Keywords

Mathematics Subject Classification

Navigation