Skip to main content

Advertisement

Log in

Stochastic dynamics of human papillomavirus delineates cervical cancer progression

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Starting from a deterministic model, we propose and study a stochastic model for human papillomavirus infection and cervical cancer progression. Our analysis shows that the chronic infection state as random variables which have the ergodic invariant probability measure is necessary for progression from infected cell population to cervical cancer cells. It is shown that small progression rate from infected cells to precancerous cells and small microenvironmental noises associated with the progression rate and viral infection help to establish such chronic infection states. It implicates that large environmental noises associated with viral infection and the progression rate in vivo can reduce chronic infection. We further show that there will be a cervical cancer if the noise associated with precancerous cell growth is large enough. In addition, comparable numerical studies for the deterministic model and stochastic model, together with Hopf bifurcations in both deterministic and stochastic systems, highlight our analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arnold L (1998) Random dynamical systems. Springer, New York

    Book  MATH  Google Scholar 

  • Arnold L, Wihstutz V, Eckmann JP, Edited (1990) Lyapunov exponents. In: Proceedings of a conference held in Oberwolfach, May 28, 1990; Lecture notes in mathematics, vol 1486. Springer

  • Arnold L, Wihstutz V, Edited (1984) Lyapunov exponents. In: Proceedings of a workshop held in Brmen; lecture notes in mathematics, vol 1186. Springer, Berlin, November 12–15, 1984

  • Asih Tri Sri Noor, Lenhart Suzanne, Wise Steven, Aryati Lina, Adi-Kusumo F, Hardianti Mardiah S, Forde Jonathan (2016) The dynamics of HPV infection and cervical cancer cells. Bull Math Biol 78:4–20

    Article  MathSciNet  MATH  Google Scholar 

  • Barnabas RV, Laukkanen P, Koskela P, Kontula O, Lehtinen M, Garnett GP (2006) Epidemiology of HPV 16 and cervical cancer in Finland and the potential impact of vaccination: mathematical modelling analyses. PLOS Med 3:0624–0632. https://doi.org/10.1371/journal.pmed.0030138

    Article  Google Scholar 

  • Bellet LR (2006) Ergodic properties of Markov processes. In: Open quantum systems II. Springer, Berlin, pp 1–39

  • Bosch FX, Manos MM, Munoz N, Sherman M, Jansen AM, Peto J et al (1995) Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. J Nat Cancer Inst 87:796–802

    Article  Google Scholar 

  • Bouvard V et al (2009) A review of human carcinogens-part B: biological agents. Lancet Oncol 10:321–322

    Article  Google Scholar 

  • Brown VI, White KAJ (2011) The role of optimal control in assessing themost cost-effective implementation of a vaccination programme: HPV as a case study. Math Biosci 231:126–134. https://doi.org/10.1016/j.mbs.2011.02.009123

    Article  MathSciNet  MATH  Google Scholar 

  • Bumrungthai S et al (2023) Mathematical modelling of cervical precancerous lesion grade risk scores: linear regression analysis of cellular protein biomarkers and human papillomavirus E6/E7 RNA staining patterns. Diagnostics 13:1084. https://doi.org/10.3390/diagnostics13061084

    Article  Google Scholar 

  • Butel JS (2000) Viral carcinogenesis: revelation of molecular mechanisms and etiology of human disease. Carcinogenesis 21(3):405–26. https://doi.org/10.1093/carcin/21.3.405

    Article  Google Scholar 

  • Clifford GM, Smith JS, Aguado T, Franceschi S (2003) Comparison of HPV type distribution in high-grade cervical lesions and cervical cancer: a meta-analysis. Br J Cancer 89(101–105):6601024. https://doi.org/10.1038/sj.bjc

    Article  Google Scholar 

  • de Villiers EM (1994) Human pathogenic papillomavirus types: an update. Curr Top Microbiol Immunol 184:1–12

    Google Scholar 

  • Dieu NT, Du NH, Nguyen HD, Yin G (2016) Protection zones for survival of species in random environment. SIAM J Appl Math 76(4):1382–1402

    Article  MathSciNet  MATH  Google Scholar 

  • Du NH, Nguyen HD, Yin G (2016) Conditions for permanence and ergodicity of certain stochastic predator-prey models. J Appl Probab 53:187–202

    Article  MathSciNet  MATH  Google Scholar 

  • Duan J (2015) An introduction to stochastic dynamics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Elbasha EH (2008) Global stability of equilibria in a two-sex HPV vaccination model. Bull Math Biol 70:894–909. https://doi.org/10.1007/s11538-007-9283-0

    Article  MathSciNet  MATH  Google Scholar 

  • Frazer IH, Cox JT, Mayezux EJ, Franco EL, Moscicki AB, Palefsky JM et al (2006) Advances in prevention of cervical cancer and other human papillomavirus-related diseases. Pediat Infect Dis J 25:S65–S81

    Article  Google Scholar 

  • Goldhaber-Fiebert JD, Stout NK, Salomon JA, Kuntz KM, Goldie SJ (2008) Cost-effectiveness of cervical cancer screening with human papillomavirus DNA testing and HPV-16,18 vaccination. J Natl Cancer Inst 100:308–320. https://doi.org/10.1093/jnci/djn019

    Article  Google Scholar 

  • Graham SV (2017) The human papillomavirus replication cycle, and its links to cancer progression: a comprehensive review. Clin Sci 131:2201–2221. https://doi.org/10.1042/CS20160786

    Article  Google Scholar 

  • Hassard BD, Kazarinoff ND, Wan Y-H (1981) Theory and applications of Hopf Bifurcation. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Hausen ZH (2001) Oncogenic DNA viruses. Oncogene 20:7820–7823

    Article  Google Scholar 

  • Hening A, Nguyen HD (2018) Coexistence and extinction for stochastic Kolmogorov systems. Ann Appl Probab 28:1893–1942

    Article  MathSciNet  MATH  Google Scholar 

  • Herfs M et al (2012) A discrete population of squamocolumnar junction cells implicated in the pathogenesis of cervical cancer. PNAS 109(26):10516–10521

    Article  Google Scholar 

  • Hörmander L (1967) Hypoelliptic second order differential equations. Acta Math 119:147–171

    Article  MathSciNet  MATH  Google Scholar 

  • Ikeda N, Watanabe S (1989) Stochastic differential equations and diffusion processes, 2nd edn. North-Holland, Amsterdam

    MATH  Google Scholar 

  • Iskandar R, Taghavi K, Low N, Bramer WM, Egger M, Rohner E (2022) Mathematical models for evaluating effectiveness and cost-effectiveness of cervical cancer control policies in populations including women living with human immunodeficiency virus: a scoping review. Value Health Reg Issues 32:39–46

    Article  Google Scholar 

  • Jorgensen B (1982) Statistical property of the generalized inverse Gaussian distribution. Springer, New York

    Book  MATH  Google Scholar 

  • Jurdjevic V (1996) Geometric control theory. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Keller H (1996) Random attractors and and bifurcations of the stochastic Lorenz system. Technical Report 389. Institut für Dynamische Systeme, Universität Bremen

  • Khasminskii R (2012) Stochastic stability of differential equations. In: Stochastic modeling and applied probability, 2nd edn

  • Kim JJ, Brisson M, Edmunds WJ, Goldie SJ (2008) Modeling cervical cancer prevention in developed countries. Vaccine 26:K76–K86. https://doi.org/10.1016/j.vaccine.2008.06.009

    Article  Google Scholar 

  • Lee C, Laimins LA (2007) The differentiation-dependent life cycle of human papillomaviruses in keratinocytes. In: Garcea R, Di Maio D (eds) The papillomaviruses. Springer, New York, pp 45–67

    Chapter  Google Scholar 

  • Lee SL, Tameru AM (2012) A mathematical model of human papillomavirus (HPV) in the United States and its impact on cervical cancer. J Cancer 3:262–268. https://doi.org/10.7150/jca.4161

    Article  Google Scholar 

  • Mao X (1997) Stochastic differential equations and their applications. Horwood Publishing, Chichester

    MATH  Google Scholar 

  • Meyn SP, Tweedie RL (1993) Stability of Markovian processes II: continuous-time processes and sampled chains. Adv Appl Probab 25:487–517

    Article  MathSciNet  MATH  Google Scholar 

  • Meyn SP, Tweedie RL (1993) Stability of Markovian processes III: Foster–Lyapunov criteria for continuous-time processes. Adv Appl Probab 25:518–548

    Article  MathSciNet  MATH  Google Scholar 

  • Munoz N, Castellsague X, de Gonzalez AB, Gissmann L (2006) Chapter 1: HPV in the etiology of human cancer. Vaccine 24:S1–S10

    Article  Google Scholar 

  • Murtono M, Ndii MZ, Sugiyanto S (2019) Mathematical model of cervical cancer treatment using chemotherapy drug. Biol Med Nat Prod Chem 8(1):11–15. https://doi.org/10.14421/biomedich.2019.81.11-15

    Article  Google Scholar 

  • Nualart D (2006) The Malliavin calculus and related topics. Springer, Berlin

    MATH  Google Scholar 

  • Ostor AG (1993) Natural history of cervical intraepithelial neoplasia: a critical review. Int J Gynecol Pathol 12:186–192

    Article  Google Scholar 

  • Parkin DM (2006) The global health burden of infection-associated cancers in the year 2002. Int J Cancer 118:3030–3044

    Article  Google Scholar 

  • Phan TA, Tian JP (2020) Basic stochastic model for tumor virotherapy. Math Biosci Eng 17(4):4271–4294

    Article  MathSciNet  MATH  Google Scholar 

  • Phan TA, Tian JP (2022) Hopf bifurcation without parameters in deterministic and stochastic modeling of cancer virotherapy, part II. J Math Anal Appl 515:126444. https://doi.org/10.1016/j.jmaa.2022.126444

    Article  MathSciNet  MATH  Google Scholar 

  • Phan TA, Nguyen HD, Tian JP (2021) Deterministic and stochastic modeling for PDGF-driven gliomas reveals a classification of gliomas. J Math Biol 83:22

    Article  MathSciNet  MATH  Google Scholar 

  • Phan TA, Tian JP, Wang B (2021) Dynamics of cholera epidemic models in fluctuating environments. Stoch Dyn 21(02):2150011. https://doi.org/10.1142/S0219493721500118

    Article  MathSciNet  MATH  Google Scholar 

  • Plummer M et al (2016) Global burden of cancers attributable to infections in 2012: a synthetic analysis. Lancet Glob Health 4:e609–e616

    Article  Google Scholar 

  • Reingold AL (2000) Infectious Disease Epidemiology in the 21st Century: Will It Be Eradicated or Will It Reemerge? Epidemiol Rev 22:57–63

    Article  Google Scholar 

  • Ryser MD, Gravittc PE, Myersd ER (2017) Mechanistic mathematical models: an underused platform for HPV research. Papillomavirus Res 3:46–49

    Article  Google Scholar 

  • Shah KV, Howley PM (1996) Papillomavirus. In: Fields BN, Knipe DM, Howley PM (eds) Virology, 3rd edn. Lippincott-Raven Press Ltd, New York, pp 2077–2109

    Google Scholar 

  • Sierra-Rojas JC, Reyes-Carreto R, Vargas-De-Leon C, Camacho JF (2022) Modeling and mathematical analysis of the dynamics of HPV in cervical epithelial cells: transient, acute, latency, and chronic infections. Comput Math Methods Med Article ID 8650071. https://doi.org/10.1155/2022/8650071

  • White MK, Pagano JS, Khalili K (2014) Viruses and human cancers: a long road of discovery of molecular paradigms. Clin Microbiol Rev 27(3):463–81. https://doi.org/10.1128/CMR.00124-13

    Article  Google Scholar 

  • Wright TC, Ferenczy A (2002) Anatomy and histology of the cervix, Blaustein’s pathology of the female genital tract, 5th edn. Springer, New York, pp 207–224

    Google Scholar 

  • Zapatka M, Borozan I, Brewer DS, Iskar M, Grundhoff A, Alawi M et al (2020) The landscape of viral associations in human cancers. Nat Genet 52:320–330

    Article  Google Scholar 

  • Ziyadi N (2017) A male–female mathematical model of human papillomavirus (HPV) in African American population. Math Biol Eng 14(1):339–358. https://doi.org/10.3934/mbe.2017022

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

TAP would like to acknowledge support by the National Institute Of General Medical Sciences of the National Institutes of Health under Award Number P20GM104420. JPT would like to acknowledge grant National Institutes of Health (U54CA132383) which supported FS for a summer during the grant periods. We thank two anonymous reviewers for their constructive suggestions which help to improve the presentation of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Paul Tian.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

To comprehend how environmental noises and randomness affect the dynamical behaviors of the deterministic system (4), we need to study how the threshold \(\lambda \) is related to the reproduction number \(R_0\). Since \(R_0=\frac{\alpha n}{e(a+\delta )}\) is a decreasing function of the parameter \(\delta \), which is the progression rate from infected cells to precancerous cells, we can consider the threshold \(\lambda \) as a function of \(\delta \) as well as a function of noise intensities. Propositions 2.1 and 2.2 give the behavior of the threshold \(\lambda \) with respect to system parameters and noise intensities. Because Proposition 2.2 is a direct consequence of Proposition 2.1, so we only present the proof of Proposition 2.1

Proof of Proposition 2.1

Since \(\dfrac{\Theta }{w}=\dfrac{a+\delta -e}{2\sqrt{\alpha n}}+\dfrac{\tau _1^2-\tau _2^2}{4\sqrt{\alpha n}}\), the threshold \(\lambda \) can be rewritten as

$$\begin{aligned} \lambda = \sqrt{\alpha n}\left[ R_{\Theta }(w)-2\frac{\Theta }{w}\right] -e-\frac{\tau _2^2}{2}. \end{aligned}$$

Let \(D_{\Theta }(w):=\dfrac{K_{\Theta +1}(w)K_{\Theta -1}(w)}{K^2_{\Theta }(w)}\) where \(K_{\Theta }(\cdot )\) is the modified Bessel function of third kind with index \(\Theta \). From Jorgensen (1982) in p. 172 and p. 175, we have \(D_{\Theta }(w)=R_{\Theta }(w)R_{-\Theta }(w)\quad \text {and}\quad D_{\Theta }(w)=R_{\Theta }(w)\left[ R_{\Theta }(w)-2\dfrac{\Theta }{w}\right] \). Hence

$$\begin{aligned} \lambda = \sqrt{\alpha n}R_{-\Theta }(w)-e-\frac{\tau _2^2}{2}. \end{aligned}$$

Since \(w>0\), a result in p. 173 in Jorgensen (1982) implies that \(R_{\Theta }(w)\) is an increasing function of \(\Theta \) and thus \(\lambda \) is a decreasing function of \(\Theta \). But, as \(\Theta \) is an increasing function of \(\delta \), so \(\lambda \) is a decreasing function of \(\delta \). Since \(R_0\) is a decreasing function of \(\delta \), \(\lambda \) is an increasing function of \(R_0\).

Next, since \({\overline{\lambda }}=\lim \limits _{(\tau _1,\tau _2)\rightarrow (0,0)}\lambda \) and \(R_{\Theta }(w)=\dfrac{\Theta }{w}+\sqrt{\left( \dfrac{\Theta }{w}\right) ^2+D_{\Theta }(w)}\),

$$\begin{aligned} {\overline{\lambda }}=\lim \limits _{(\tau _1,\tau _2)\rightarrow (0,0)}\left\{ \left[ \dfrac{\Theta }{w}+\sqrt{\left( \dfrac{\Theta }{w}\right) ^2+D_{\Theta }(w)}\right] \sqrt{\alpha n}-a-\delta -\frac{\tau _1^2}{2}\right\} . \end{aligned}$$

As \(\dfrac{\Theta }{w}\rightarrow \dfrac{a+\delta -e}{2\sqrt{\alpha n}}\) and \(D_{\Theta }(w)\rightarrow 1\) as \((\tau _1,\tau _2)\rightarrow (0,0)\), so

$$\begin{aligned} {\overline{\lambda }}=\frac{a+\delta -e}{2}+\sqrt{\left( \frac{a+\delta -e}{2}\right) ^2+\alpha n}-a-\delta . \end{aligned}$$

It implies that \({\overline{\lambda }}=0\) iff \(R_0=1\), \({\overline{\lambda }}<0\) iff \(R_0<1\), and \({\overline{\lambda }}>0\) iff \(R_0>1\). This completes the proof. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phan, T.A., Sarower, F., Duan, J. et al. Stochastic dynamics of human papillomavirus delineates cervical cancer progression. J. Math. Biol. 87, 85 (2023). https://doi.org/10.1007/s00285-023-02018-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00285-023-02018-z

Keywords

Mathematics Subject Classification

Navigation