Skip to main content
Log in

Bifurcations driven by generalist and specialist predation: mathematical interpretation of Fennoscandia phenomenon

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper, we revisit a predator–prey model with specialist and generalist predators proposed by Hanski et al. (J Anim Ecol 60:353–367, 1991) , where the density of generalist predators is assumed to be a constant. It is shown that the model admits a nilpotent cusp of codimension 4 or a nilpotent focus of codimension 3 for different parameter values. As the parameters vary, the model can undergo cusp type (or focus type) degenerate Bogdanov–Takens bifurcations of codimension 4 (or 3). Our results indicate that generalist predation can induce more complex dynamical behaviors and bifurcation phenomena, such as three small-amplitude limit cycles enclosing one equilibrium, one or two large-amplitude limit cycles enclosing one or three equilibria, three limit cycles appearing in a Hopf bifurcation of codimension 3 and dying in a homoclinic bifurcation of codimension 3. In addition, we show that generalist predation stabilizes the limit cycle driven by specialist predators to a stable equilibrium, which clearly explains the famous Fennoscandia phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

This paper has no associated data.

References

  • Cai L, Chen G, Xiao D (2013) Multiparametric bifurcations of an epidemiological model with strong Allee effect. J Math Biol 67:185–215

    Article  MathSciNet  MATH  Google Scholar 

  • Chen X, Zhang W (2009) Decomposition of algebraic sets and applications to weak centers of cubic systems. J Comput Appl Math 232:565–581

    Article  MathSciNet  MATH  Google Scholar 

  • Chow SN, Li C, Wang D (1994) Normal forms and bifurcation of planar vector fields. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Dumortier F, Roussarie R, Sotomayor J, Żoładek H (1991) Bifurcation of planar vector fields, nilpotent singularities and abelian integrals, vol 1480. Lecture Notes in Mathematics. Springer, Berlin

  • Gasull A, Kooij RE, Torregrosa J (1997) Limit cycles in the Holling–Tanner model. Publ Mat 41:149–167

    Article  MathSciNet  MATH  Google Scholar 

  • Gelfand IM, Kapranov MM, Zelevinsky AV (1994) Discriminants, resultants and multidimensional determinants, Birkhäuser Boston, Inc., Boston, MA

  • Hanski I, Hansson L, Henttonen H (1991) Specialist predators, generalist predators, and the microtine rodent cycle. J Anim Ecol 60:353–367

    Article  Google Scholar 

  • Hsu SB, Huang TW (1999) Hopf bifurcation analysis for a predator-prey system of Holling and Leslie type. Taiwanese J Math 3:35–53

    Article  MathSciNet  MATH  Google Scholar 

  • Lamontagne Y, Coutu C, Rousseau C (2008) Bifurcation analysis of a predator-prey system with generalised Holling type III functional response. J Dyn Differ Equ 20:535–571

    Article  MathSciNet  MATH  Google Scholar 

  • Li C, Rousseau C (1989) A system with three limit cycles appearing in a Hopf bifurcation and dying in a homoclinic bifurcation: the cusp of order 4. J Differ Equ 79:132–167

    Article  MathSciNet  MATH  Google Scholar 

  • Lindström T (1993) Qualitative analysis of a predator-prey system with limit cycles. J Math Biol 31:541–561

    Article  MathSciNet  MATH  Google Scholar 

  • Lu M, Huang J (2021) Global analysis in Bazykin’s model with Holling II functional response and predator competition. J Differ Equ 280:99–138

    Article  MathSciNet  MATH  Google Scholar 

  • Lu M, Huang J, Wang H (2023) An organizing center of codimension four in a predator–prey model with generalist predator: from tristability and quadristability to transients in a nonlinear environmental change. SIAM J Appl Dyn Syst (in press)

  • Sáez E, González-Olivares E (1999) Dynamics of a predator–prey model. SIAM J Appl Math 59:1867–1878

    Article  MathSciNet  MATH  Google Scholar 

  • Xiang C, Huang J, Ruan S, Xiao D (2020) Bifurcation analysis in a host-generalist parasitoid model with Holling II functional response. J Differ Equ 268:4618–4662

    Article  MathSciNet  MATH  Google Scholar 

  • Xiang C, Huang J, Wang H (2022) Linking bifurcation analysis of Holling–Tanner model with generalist predator to a changing environment. Stud Appl Math 149:124–163

    Article  MathSciNet  Google Scholar 

  • Xiang C, Huang J, Wang H (2023) Bifurcations in Holling–Tanner model with generalist predator and prey refuge. J Differ Equ 343:495–529

    Article  MathSciNet  MATH  Google Scholar 

  • Xiang C, Lu M, Huang J (2022) Degenerate Bogdanov–Takens bifurcation of codimension 4 in Holling–Tanner model with harvesting. J Differ Equ 314:370–417

    Article  MathSciNet  MATH  Google Scholar 

  • Xiao D, Zhang KF (2007) Multiple bifurcations of a predator–prey system. Discrete Contin Dyn Syst Ser B 8:417–433

    MathSciNet  MATH  Google Scholar 

  • Yang L (1999) Recent advances on determining the number of real roots of parametric polynomials. J Symbolic Comput 28:225–242

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang Z, Ding T, Huang W, Dong Z (1992) Qualitative theory of differential equations. Transl Math Monogr 101, American Mathematical Society, Providence, RI

Download references

Acknowledgements

Jicai Huang’s research is partially supported by NSFC (No. 11871235 and No. 12231008). Hao Wang’s research is partially supported by NSERC (RGPIN-2020-03911 and RGPAS-2020-00090).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jicai Huang or Hao Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: The proof of Theorem 1

In this Appendix, we first show that \(E_*\) is a cusp of codimension at most 4 in Theorem 1. We need to show that

$$\begin{aligned} \begin{array}{ll} \textrm{V}(M,\,M_1,\,M_2)\cap \Omega _{24}=\emptyset , \end{array} \end{aligned}$$
(A1)

where \(\Omega _{24}\) is shown in (3.21), and the other notations are shown in Theorem 1.

We denote “\(\textrm{V}(f_1,\,f_2,...,f_n)\)” as the set of common zeros of \(f_1,\,f_2,...,f_n\), “\(\textrm{res}(f_1,\,f_2,\,x)\)” as the resultant of \(f_1\) and \(f_2\) with respect to x, “\(\textrm{prem}(f_1,\,f_2,\,x)\)” as the pseudo-remainder of \(f_1\) divided by \(f_2\) with respect to x, and “\(\textrm{lcoeff}(f_1,\,x)\)” as the leading coefficient of \(f_1\) with respect to x.

Step 1. Simplify the algebraic variety \(\textrm{V}(M, M_1, M_2)\cap \Omega _{24}\).

By eliminating variables in the order \(\eta \prec \alpha \), we have

$$\begin{aligned} \textrm{res}(M,\,M_1,\,\eta )&= 1024 \alpha ^2 u_*^{20} (\alpha +u_*)^8 (\alpha +u_*^2)^4r_{11},\nonumber \\ \textrm{res}(M,\,M_2,\,\eta )&= -262144 \alpha ^3 u_*^{34} (3 u_*-1) (\alpha +u_*)^{13} (\alpha +u_*^2)^7 r_{12},\nonumber \\ \textrm{res}(r_{11},\,r_{12},\,\alpha )&= 3676258543978604182634496000 (u_*-3){}^8 (u_*-1){}^7 u_*^{175} \nonumber \\&\times (3 u_*-1){}^9 r_{21}r_{22}, \end{aligned}$$
(A2)

where \(r_{11}\) and \(r_{12}\) are polynomials of \((u_*, \alpha )\), \(r_{21}\) and \(r_{22}\) are 17- and 54-order polynomials of \(u_*\), and we omit their complicated expressions.

Notice that, \(\textrm{lcoeff}(M, \eta )=\alpha (\alpha +3 u_*)> 0\) and \(\textrm{lcoeff}(r_{11}, \alpha )=27 u_*^4+86 u_*^3-112 u_*^2-8 u_*-8< 0\) in \(\Omega _{24}\). Similarly, from Theorem 1 in Chen and Zhang (2009) we can get that

$$\begin{aligned} \begin{array}{ll} \textrm{V}(M,\,M_1,\,M_2)\cap \Omega _{24}=\textrm{V}(M,\,M_1,\,M_2,\,r_{11},\,r_{12},\,r_{21}r_{22})\cap \Omega _{24}. \end{array} \end{aligned}$$
(A3)

Step 2. Simplify the algebraic variety \(\textrm{V}(r_{11},\,r_{12},\,r_{21}r_{22})\cap \Omega _{24}\).

First, by using the Maple command \(``\textrm{realroot}''\), we know that there exist one root \(u_{*0}\in I_0\) for \(\textrm{realroot}(r_{21}, 1/10^{10})\), and four roots \(u_{*i}\in I_i\) (i=1,...,4) for \(\textrm{realroot}(r_{22}, 1/10^{10})\) in \(\Omega _{24}\), such that \(r_{21}\mid _{u_{*}=u_{*0}}=r_{22}\mid _{u_{*}=u_{*i}}=0\) (i=1,...,4), where

$$\begin{aligned} \begin{array}{ll} &{}u_{*0}\doteq 0.005234,\ u_{*1}\doteq 0.017194,\ u_{*2}\doteq 0.022588,\\ &{} u_{*3}\doteq 0.070624,\ u_{*4}\doteq 0.2989611526, \end{array} \end{aligned}$$
(A4)

and

$$\begin{aligned} \begin{array}{ll} I_0=[\frac{1581734929692734191289}{302231454903657293676544},\frac{395433732423183547829}{75557863725914323419136}],\\[1.0ex] I_1=[\frac{20786838110638649144145}{1208925819614629174706176},\frac{41573676221277298288317}{2417851639229258349412352}],\\[1.0ex] I_2=[\frac{101727566390447}{4503599627370496},\frac{406910265561815}{18014398509481984}],\\[1.0ex] I_3=[\frac{5336187978172332291869}{75557863725914323419136},\frac{10672375956344664583765}{151115727451828646838272}],\\[1.0ex] I_4=[\frac{2629690108339}{8796093022208},\frac{5259380216687}{17592186044416}]. \end{array} \end{aligned}$$
(A5)

Second, by using pseudo-division we can get nine pseudo-remainders

$$\begin{aligned} \begin{array}{ll} &{}w_1=\textrm{prem}(r_{12},\,r_{11},\,\alpha ),\quad w_2=\textrm{prem} (r_{11},\,w_1,\,\alpha ),\\ {} &{} w_i=\textrm{prem}(w_{i-2},\,w_{i-1},\,\alpha ), \ (i=3,...,9), \end{array} \end{aligned}$$
(A6)

where \(w_i\) (i=1,...,9) are (10-i)-order functions of \(\alpha \), and the coefficients are functions of \(u_*\).

Notice that, \(\textrm{lcoeff}(r_{11},\, \alpha )\ne 0\), and by using Sturm’s theorem we can get that \(\textrm{lcoeff}(w_i,\, \alpha )\ne 0\), (i=1,...,9) when \(u_{*}\in \cup _{j=0}^{4}I_j\).

Combining above analysis, we can get that in \( \cup _{j=0}^{4}I_j\), \(\textrm{V}(r_{12},\,r_{11})\ne \emptyset \) and

$$\begin{aligned} \begin{array}{ll} \textrm{V}(r_{12},\,r_{11})=\textrm{V}(r_{11},\,w_1) =\textrm{V}(w_1,\,w_2)=...=\textrm{V}(w_8,\,w_9)\subseteq \textrm{V}(w_9). \end{array} \end{aligned}$$
(A7)

From (A6), we know that \(w_9\) is a linear function of \(\alpha \) which has a unique root, and from \(w_9=0\) we can get that \(\alpha =\alpha _0(u_*)\). By using Sturm’s theorem again, we can show that \(\alpha _0(u_*)\) is a well defined monotone function and has no roots in \(I_i\) (i=0,...,4). Therefore, we can obtain that

$$\begin{aligned} \begin{array}{ll} \alpha _0(u_{*0})\doteq 0.002379,\ \alpha _0(u_{*1})\doteq 0.022203,\ \alpha _0(u_{*2})\doteq 0.015347,\\ \alpha _0(u_{*3})\doteq 0.048550,\ \alpha _0(u_{*4})\doteq -0.199313, \end{array} \end{aligned}$$
(A8)

which show that when \(u_*=u_{*4}\), we have \(\alpha _0(u_*)<0\), that is \(\textrm{V}(w_9,\,r_{22})\cap \Omega _{24}=\emptyset \). So that, we only need to consider the cases \(u_*=u_{*i}\) (i=0,...,3).

Notice that, \((u_*, \alpha _0(u_*))\in \Omega _{21}\). In the following, we first consider the monotonicity of \(\alpha _1\) and \(\alpha _2\) respect to \(u_*\) where \(u_*\in (0, \frac{3-\sqrt{6}}{12} ]\). Through simple calculation, we can get that

$$\begin{aligned} \begin{array}{ll} \frac{d\alpha _1}{du_*}=\frac{36 u_*-1-96 u_*^3-72 u_*^2+(1-16 u_*^2-16 u_*) \sqrt{48 u_*^2-24 u_*+1} }{2 (2 u_*+1){}^2 \sqrt{48 u_*^2-24 u_*+1}}\triangleq \frac{\alpha _{11}+\alpha _{12}\sqrt{48 u_*^2-24 u_*+1} }{2 (2 u_*+1){}^2 \sqrt{48 u_*^2-24 u_*+1}}, \end{array} \end{aligned}$$

moreover, we have \(\alpha _{11}^{2}-\alpha _{12}^{2}(48 u_*^2-24 u_*+1)<0\ (=0,\ \textrm{or}\ >0)\) if \(0<u_*<0.035607\ (u_*=0.035607,\ \textrm{or}\ 0.035607<u_*\le \frac{3-\sqrt{6}}{12})\), that is \(\textrm{sign}\frac{d\alpha _1}{du_*}=\textrm{sign}\alpha _{12}\ (\frac{\textrm{sign}\alpha _{11}+\textrm{sign}\alpha _{12}}{2},\ \textrm{or}\ \textrm{sign}\alpha _{11}) \textrm{if} 0<u_*<0.035607\ (u_*=0.035607,\ \textrm{or}\ 0.035607<u_*\le \frac{3-\sqrt{6}}{12})\). Further, we have \(\alpha _{11}>0\) when \(0.035607\le u_*\le \frac{3-\sqrt{6}}{12}\), and \(\alpha _{12}>0\) when \(0<u_*\le 0.035607\). Therefore, we can get that \(\frac{d\alpha _1}{du_*}>0\) when \(u_*\in (0, \frac{3-\sqrt{6}}{12} ]\). Similarly, we can show that \(\frac{d\alpha _2}{du_*}>0\ (=0,\ <0)\) when \(0<u_*<0.035607\ (u_*=0.035607,\ \textrm{or}\ 0.035607<u_*\le \frac{3-\sqrt{6}}{12})\).

Therefore, from the above analysis, we know that \(\alpha _1\) and \(\alpha _2\) are monotone when \(u_*\in \cup _{j=0}^{2}I_j\), and we have

$$\begin{aligned} \begin{array}{ll} \alpha _1(u_{*0})\doteq 0.000058,\ \alpha _2(u_{*0})\doteq 0.004905,\ \alpha _1(u_{*1})\doteq 0.000722,\\ \alpha _2(u_{*1})\doteq 0.013614,\ \alpha _1(u_{*2})\doteq 0.001348,\ \alpha _2(u_{*2})\doteq 0.016358. \end{array} \end{aligned}$$
(A9)

Combining (A4), (A8) and (A9), when \(u_*=u_{*i}\) (i=0, 2, 4), we have \((u_{*i}, \alpha _0(u_{*i}))\notin \Omega _{21}\), that is \(\textrm{V}(w_9,\,r_{21}r_{22})\cap \Omega _{24}=\emptyset \), i.e., \(\textrm{V}(r_{11},\,r_{12},\,r_{21}r_{22})\cap \Omega _{24}=\emptyset \). When \(u_*=u_{*i}\) (i=1, 3), we have \((u_{*i}, \alpha _0(u_{*i}))\in \Omega _{21}\), that is \(\textrm{V}(w_9,\,r_{21}r_{22})\cap \Omega _{24}=\textrm{V}(w_9,\,r_{22})\cap \Omega _{24}=\{(u_*, \alpha ):\ u_*=u_{*i}\ \textrm{and}\ \alpha =\alpha _0(u_{*i}),\ i=1,\ 3\}\ne \emptyset \), then we can get that

$$\begin{aligned} \textrm{V}(r_{11},\,r_{12},\,r_{21}r_{22})\cap \Omega _{24}&=\ \textrm{V}(r_{11},\,r_{12},\,r_{22})\cap \Omega _{24}\nonumber \\&=\ \cup _{i=1, 3} \{(u_*, \alpha ):\ u_*=u_{*i}\ \textrm{and}\ \alpha =\alpha _0(u_{*i})\}, \end{aligned}$$
(A10)

where \(u_{*i}\) and \(\alpha _0(u_{*i})\) are shown in (A4) and (A8), respectively.

Summarizing the above analysis and from (A3) we can get that

$$\begin{aligned}&\textrm{V}(M,\,M_1,\,M_2,\,r_{11},\,r_{12},\,r_{21}r_{22})\cap \Omega _{24}\nonumber \\&\quad =\textrm{V}(M,\,M_1,\,M_2,\,r_{11},\,r_{12},\,r_{22})\cap \Omega _{24}\nonumber \\&\quad =\textrm{V}(M,\,M_1,\,M_2)\cap \big (\cup _{i=1, 3} \big \{(u_*, \alpha ):\ (u_*,\,\alpha )=(u_{*i},\,\alpha _0(u_{*i}))\big \}\big )\cap \Omega _{24}\nonumber \\&\quad \triangleq \cup _{i=1, 3} \mathrm{V_i}, \end{aligned}$$
(A11)

where

$$\begin{aligned} \begin{array}{ll} \mathrm{V_i}=\textrm{V}(M,\,M_1,\,M_2)\cap \big \{(u_*, \alpha ):\ (u_*,\,\alpha )= (u_{*i},\,\alpha _0(u_{*i}))\big \}\cap \Omega _{24}. \end{array} \end{aligned}$$
(A12)

Step 3. Prove that \(\textrm{V}_1=\emptyset \)  in (A11).

First, we simplify the algebraic variety \(\textrm{V}(M,\,M_1)\) in (A11). By using pseudo-division again, we can get one pseudo-remainder

$$\begin{aligned} \begin{array}{ll} w_{10}=\textrm{prem}(M_1,\,M,\,\eta ), \end{array} \end{aligned}$$
(A13)

where \(w_{10}\) is 1-order function of \(\eta \), and the coefficients are functions of \((u_*,\,\alpha )\). Then we can get that

$$\begin{aligned} \begin{array}{ll} \textrm{V}(M_1,\,M)=\textrm{V}(M,\,w_{10})\subseteq \textrm{V}(w_{10}). \end{array} \end{aligned}$$
(A14)

From (A13), we know that \(w_{10}\) is a linear function of \(\eta \) which has a unique root, and from \(w_{10}=0\) we can get that \(\eta =\eta _{00}(u_*,\,\alpha )\), where

$$\begin{aligned} \begin{array}{ll} &{}\eta _{00}(u_*,\,\alpha )\\ &{}\quad =[u_*^2 (-\alpha ^{10} (27 u_*^3-130 u_*^2+64 u_*+68)-\alpha ^9 (231 u_*^3-1358 u_*^2+882 u_*\\ &{}\qquad +276) u_*-2 \alpha ^8 (252 u_*^3-2567 u_*^2+1931 u_*+180) u_*^2+2 \alpha ^7 (438 u_*^3+3625 u_*^2\\ &{}\qquad -3981 u_*+128) u_*^3+2 \alpha ^6 (2385 u_*^3-2701 u_*^2-2579 u_*+618) u_*^4+2 \alpha ^5 \\ &{}\qquad \times (1311 u_*^3-14171 u_*^2+5013 u_*+402) u_*^5-6 \alpha ^4 (1956 u_*^3+3817 u_*^2-3453 u_*\\ &{}\qquad +132) u_*^6-6 \alpha ^3 (2406 u_*^3-1897 u_*^2-1827 u_*+144) u_*^7+9 \alpha ^2 (777 u_*^2+2032 u_*\\ &{}\qquad -18) u_*^9+27 \alpha (547 u_*+80) u_*^{11}+3240 u_*^{13})]\big /[\alpha ^{10} (27 u_*^3-238 u_*^2+584 u_*\\ &{}\qquad -396)+\alpha ^9 (123 u_*^3-1438 u_*^2+3850 u_*-2396) u_*-2 \alpha ^8 (48 u_*^3+1063 u_*^2\\ &{}\qquad -4771 u_*+3060) u_*^2+2 \alpha ^7 (-654 u_*^3+2495 u_*^2+2993 u_*-3384) u_*^3-2 \alpha ^6\\ &{}\qquad \times (477 u_*^3-8865 u_*^2+8669 u_*-1022) u_*^4+2 \alpha ^5 (2565 u_*^3+2883 u_*^2-16321 u_*\\ &{}\qquad +7254) u_*^5+18 \alpha ^4 (360 u_*^3-1805 u_*^2-295 u_*+852) u_*^6-54 \alpha ^3 (162 u_*^3\\ &{}\qquad +553 u_*^2-489 u_*-104) u_*^7-27 \alpha ^2 (507 u_*^2-540 u_*-622) u_*^9+81 \alpha (67 u_*\\ &{}\qquad +240) u_*^{11}+9720 u_*^{13}], \end{array}\nonumber \\ \end{aligned}$$
(A15)

and notice that \(\big (u_{*1},\,\alpha _0(u_{*1}),\,\eta _{00}\big (u_{*1},\,\alpha _0(u_{*1})\big )\big )\in \Omega _{24}\).

Denote \(\eta _{00}(u_*,\,\alpha )\triangleq \frac{\eta _{001}}{\eta _{002}}\), where \(\eta _{001}\) and \(\eta _{002}\) are polynomials of \((u_*,\,\alpha )\), and we know that \((u_{*1},\,\alpha _0(u_{*1}))\in I_1\times [\frac{2220321857376}{10^{14}}, \frac{2220332345838}{10^{14}}]\triangleq [u_{00}, u_{01}]\times [\alpha _{00}, \alpha _{01}]\), where \(I_1\) is shown in (A5).

We first prove that \(\eta _{002}\ne 0\) in the region \([u_{00}, u_{01}]\times [\alpha _{00}, \alpha _{01}]\) by the following 2 substeps.

Step 3.1. Prove that \(\eta _{002}\)  has no critical point in the interior of the region.

The corresponding first-order partial derivatives of \(\eta _{002}\) as \(\frac{\partial \eta _{002}}{\partial u_*}\) and \(\frac{\partial \eta _{002}}{\partial \alpha }\), where we omit the detailed expressions. By using Sturm’s theorem, we can get that \(\textrm{res}\big (\frac{\partial \eta _{002}}{\partial u_*},\, \frac{\partial \eta _{002}}{\partial \alpha },\, \alpha \big )\) has no root in \([u_{00}, u_{01}]\), and we have \(\textrm{lcoeff}(\frac{\partial \eta _{002}}{\partial u_*},\,\alpha )=81{u_*}^{2}-476u_*+584 \ne 0\). Then, we can get that

$$\begin{aligned} \begin{aligned} \textrm{V}\Big (\frac{\partial \eta _{002}}{\partial u_*},\, \frac{\partial \eta _{002}}{\partial \alpha }\Big )=\textrm{V} \Big (\frac{\partial \eta _{002}}{\partial u_*},\, \frac{\partial \eta _{002}}{\partial \alpha },\, \textrm{res}\big (\frac{\partial \eta _{002}}{\partial u_*},\, \frac{\partial \eta _{002}}{\partial \alpha },\, \alpha \big )\Big )=\emptyset \end{aligned} \end{aligned}$$

in \([u_{00}, u_{01}]\), which shows that \(\eta _{002}\) has no critical point in the interior of \([u_{00}, u_{01}]\times [\alpha _{00}, \alpha _{01}]\), moreover, the maximum and minimum of \(\eta _{002}\) can only be achieved on the boundary of this region.

Step 3.2. Prove that  \(\eta _{002}\)  is monotone and rootless at the boundary of the region.

By using Sturm’s theorem again, we can get that

$$\begin{aligned} \begin{aligned} \eta _{002}\mid _{u_*=u_{00}},\ \ \eta _{002}\mid _{u_*=u_{01}},\ \ \frac{d (\eta _{002}\mid _{u_*=u_{00}})}{d\alpha },\ \ \frac{d ( \eta _{002}\mid _{u_*=u_{01}})}{d\alpha } \end{aligned} \end{aligned}$$

have no roots in \([\alpha _{00}, \alpha _{01}]\), and

$$\begin{aligned} \begin{aligned} \eta _{002}\mid _{\alpha =\alpha _{00}},\ \ \eta _{002}\mid _{\alpha =\alpha _{01}},\ \ \frac{d (\eta _{002}\mid _{\alpha =\alpha _{00}})}{du_*},\ \ \frac{d ( \eta _{002}\mid _{\alpha =\alpha _{01}})}{du_*} \end{aligned} \end{aligned}$$

have no roots in \([u_{00}, u_{01}]\).

Hence, by calculating the values of four vertices of rectangular field \([u_{00}, u_{01}]\times [\alpha _{00}, \alpha _{01}]\), we can get that \(\eta _{002}\in [-1.719412\times 10^{-16}, -1.676935\times 10^{-16}]\) in \([u_{00}, u_{01}]\times [\alpha _{00}, \alpha _{01}]\), which shows that \(\eta _{002}\) is well defined in this region.

Second, by using the same techniques, we analyse the value range of \(\eta _{00}(u_*,\,\alpha )\) in \([u_{00}, u_{01}]\times [\alpha _{00}, \alpha _{01}]\). Through a series of calculations, we have

$$\begin{aligned} \begin{array}{ll} \frac{\partial \eta _{00}(u_*,\,\alpha )}{\partial \alpha }=\frac{4u_*^{3}\eta _{003}}{\eta _{002}^{2}},\quad \frac{\partial \eta _{00}(u_*,\,\alpha )}{\partial u_*}=\frac{-2u_*(\alpha +u_*)\eta _{004}}{\eta _{002}^{2}}, \end{array} \end{aligned}$$

where \(\eta _{003}\) and \(\eta _{004}\) are polynomials of \((u_*,\,\alpha )\), and \(\textrm{lcoeff}(\eta _{003},\,\alpha )= 729{u}^{6}-9207{u}^{5}+45790{u}^{4}-109538{u}^{3}+131768{u}^{2}-74136u+13408\ne 0\) in \([u_{00}, u_{01}]\). By using Sturm’s theorem again, we can get that \(\textrm{res}(\eta _{003},\,\eta _{004},\,\alpha )\) has no real roots in \([u_{00}, u_{01}]\).

Combining the above analysis, we have

$$\begin{aligned} \begin{array}{ll} \textrm{V}(\eta _{003},\,\eta _{004})=\textrm{V}(\eta _{003},\,\eta _{004},\,\textrm{res}(\eta _{003},\,\eta _{004},\,\alpha ))=\emptyset \end{array} \end{aligned}$$

in \([u_{00}, u_{01}]\times [\alpha _{00}, \alpha _{01}]\), which shows that \(\eta _{00}(u_*,\,\alpha )\) has no critical point in the interior of \([u_{00}, u_{01}]\times [\alpha _{00}, \alpha _{01}]\). Therefore, the maximum and minimum of \(\eta _{00}(u_*,\,\alpha )\) can only be achieved on the boundary of this region.

By using Sturm’s theorem, we can get that

$$\begin{aligned} \begin{aligned} \eta _{00}(u_{00},\,\alpha ),\ \ \eta _{00}(u_{01},\,\alpha ),\ \ \frac{d(\eta _{00}(u_{00},\,\alpha ))}{d\alpha },\ \ \frac{d(\eta _{00}(u_{01},\,\alpha ))}{d\alpha } \end{aligned} \end{aligned}$$

have no roots in \([\alpha _{00}, \alpha _{01}]\), moreover, \(\frac{d(\eta _{00}(u_{00},\,\alpha ))}{d\alpha }<0\ \textrm{and}\ \frac{d(\eta _{00}(u_{01},\,\alpha ))}{d\alpha }<0\) in \([\alpha _{00}, \alpha _{01}]\). Similarly,

$$\begin{aligned} \begin{aligned} \eta _{00}(u_*,\,\alpha _{00}),\ \ \eta _{00}(u_*,\,\alpha _{01}),\ \ \frac{d(\eta _{00}(u_*,\,\alpha _{00}))}{du_*},\ \ \frac{d(\eta _{00}(u_*,\,\alpha _{01}))}{du_*} \end{aligned} \end{aligned}$$

have no roots in \([u_{00}, u_{01}]\), moreover, \(\frac{d(\eta _{00}(u_*,\,\alpha _{00}))}{du_*}>0\ \textrm{and}\ \frac{d(\eta _{00}(u_*,\,\alpha _{01}))}{du_*}>0\) in \([u_{00}, u_{01}]\).

Hence, the minimum and maximum of \(\eta _{00}(u_*,\,\alpha )\) in \([u_{00}, u_{01}]\times [\alpha _{00}, \alpha _{01}]\) are \(\eta _{00}(u_{00},\,\alpha _{01})\doteq 0.000920\) and \(\eta _{00}(u_{01},\,\alpha _{00})\doteq 0.000943\), respectively. Therefore, we have \(\eta _{00}(u_{*1},\,\alpha _0(u_{*1}))\in [0.000920, 0.000943]\). Similarly, we have \(\eta _0\doteq 0.000285\) in \([u_{00}, u_{01}]\). Therefore, we can get that \(\eta _{00}(u_{*1},\,\alpha _0(u_{*1}))>\eta _0\). That is, \(\big (u_{*1},\,\alpha _0(u_{*1}),\,\eta _{00}\big (u_{*1},\,\alpha _0(u_{*1})\big )\big )\notin \Omega _{24}\).

Summarizing the above analysis, we can obtain that

$$\begin{aligned} \begin{array}{ll} \mathrm{V_1}&{}= \textrm{V}(M,\,M_1,\,M_2)\cap \big \{(u_*, \alpha ):\ (u_*,\,\alpha )=(u_{*1},\,\alpha _0(u_{*1}))\big \}\cap \Omega _{24}\\ &{}\subseteq \textrm{V}(w_{10},\,M_2)\cap \big \{(u_*, \alpha ):\ (u_*,\,\alpha )=(u_{*1},\,\alpha _0(u_{*1}))\big \}\cap \Omega _{24}\\ &{}= \textrm{V}(M_2)\cap \big \{(u_*, \alpha , \eta ):\ (u_*,\, \alpha ,\, \eta )=\big (u_{*1},\,\alpha _0(u_{*1}),\,\eta _{00}(u_{*1},\,\alpha _0(u_{*1}))\big )\big \}\\ {} &{}\quad \, \cap \Omega _{24}\\ &{}= \emptyset . \end{array} \end{aligned}$$

Step 4. Prove that \(\textrm{V}_3=\emptyset \) in (A11).

In the following, we use the same method as Step 3 to analyse \(\textrm{V}_3\). We first simplify the algebraic variety \(\textrm{V}(M,\,M_1)\) in (A11), from (A13) and (A14) we know that

$$\begin{aligned}{} & {} \textrm{V}(M,\,M_1)\cap \big \{(u_*, \alpha ):\ (u_*,\,\alpha )=(u_{*3},\,\alpha _0(u_{*3}))\big \}\cap \Omega _{24} \nonumber \\{} & {} \quad \subseteq \textrm{V}(w_{10})\cap \big \{(u_*, \alpha ):\ (u_*,\,\alpha )=(u_{*3},\,\alpha _0(u_{*3}))\big \}\cap \Omega _{24} \nonumber \\{} & {} = \big \{(u_*, \alpha , \eta ):\ (u_*,\, \alpha ,\, \eta )=\big (u_{*3},\,\alpha _0(u_{*3}),\,\eta _{00}(u_{*3},\,\alpha _0(u_{*3}))\big )\big \}\cap \Omega _{24}.\qquad \end{aligned}$$
(A16)

We next prove that \(\big (u_{*3},\,\alpha _0(u_{*3}),\,\eta _{00}\big (u_{*3},\,\alpha _0(u_{*3})\big )\big )\in \Omega _{24}\). In fact, we have \((u_{*3},\,\alpha _0(u_{*3}))\in I_3\times [\frac{48549816647411}{10^{15}}, \frac{48549816647417}{10^{15}}]\triangleq [u_{10}, u_{11}]\times [\alpha _{10}, \alpha _{11}]\), where \(I_3\) is shown in (A5).

Similarly, we can also show that \(\eta _{00}(u_*,\,\alpha )\) is well defined and

$$\begin{aligned} \begin{array}{ll} \eta _{00}(u_{*3},\,\alpha _0(u_{*3}))\in [0.00026494773853172, 0.00026494773853175] \end{array} \end{aligned}$$
(A17)

in \([u_{10}, u_{11}]\times [\alpha _{10}, \alpha _{11}]\), and \(\eta _0\doteq 0.004283\) in \([u_{10}, u_{11}]\). Hence, we can get that \(\eta _{00}(u_{*3},\,\alpha _0(u_{*3}))<\eta _0\). That is, \(\big (u_{*3},\,\alpha _0(u_{*3}),\,\eta _{00}\big (u_{*3},\,\alpha _0(u_{*3})\big )\big )\in \Omega _{24}\).

Therefore, we can obtain that

$$\begin{aligned} \begin{array}{ll} &{}\textrm{V}(M,\,M_1)\cap \Omega _{24}\supseteq \big \{(u_*, \alpha , \eta ):\ (u_*,\, \alpha ,\, \eta )\\ &{}\quad =\big (u_{*3},\,\alpha _0(u_{*3}),\,\eta _{00}(u_{*3},\,\alpha _0(u_{*3}))\big )\big \}\cap \Omega _{24}\ne \emptyset , \end{array} \end{aligned}$$
(A18)

then we can get that \(E_*\) is a cusp of codimension at least 4.

Second, we continue to analyze the algebraic variety \(\textrm{V}(M,\,M_2)\) in (A11), by using pseudo-division once again, we can get one pseudo-remainder,

$$\begin{aligned} \begin{array}{ll} w_{11}=\textrm{prem}(M_2,\,M,\,\eta ), \end{array} \end{aligned}$$
(A19)

where \(w_{11}\) is 1-order function of \(\eta \), and the coefficients are functions of \((u_*,\,\alpha )\). Then we have

$$\begin{aligned} \begin{array}{ll} \textrm{V}(M_2,\,M)=\textrm{V}(M,\,w_{11})\subseteq \textrm{V}(w_{11}), \end{array} \end{aligned}$$
(A20)

and from \(w_{11}=0\) we can get a unique root \(\eta =\eta _{01}(u_*,\,\alpha )\).

Similarly, we can also show that \(\eta _{01}(u_*,\,\alpha )\) is well defined and \(\eta _{01}(u_{*3},\,\alpha _0(u_{*3}))\in [0.014132345, 0.014132346]\) in \([u_{10}, u_{11}]\times [\alpha _{10}, \alpha _{11}]\). Hence, we can get that \(\eta _{01}(u_{*3},\,\alpha _0(u_{*3}))>\eta _0\), that is, \(\big (u_{*3},\,\alpha _0(u_{*3}),\,\eta _{01}\big (u_{*3},\,\alpha _0(u_{*3})\big )\big )\notin \Omega _{24}\).

Therefore, we can obtain that

$$\begin{aligned} \begin{array}{ll} \mathrm{V_3}&{}= \textrm{V}(M,\,M_1,\,M_2)\cap \big \{(u_*, \alpha ):\ (u_*,\,\alpha )=(u_{*3},\,\alpha _0(u_{*3}))\big \}\cap \Omega _{24}\\ &{}\subseteq \textrm{V}(w_{11},\,M_1)\cap \big \{(u_*, \alpha ):\ (u_*,\,\alpha )=(u_{*3},\,\alpha _0(u_{*3}))\big \}\cap \Omega _{24}\\ &{}= \textrm{V}(M_1)\cap \big \{(u_*, \alpha , \eta ):\ (u_*,\, \alpha ,\, \eta )=\big (u_{*3},\,\alpha _0(u_{*3}),\,\eta _{01}(u_{*3},\, \alpha _0(u_{*3}))\big )\big \}\\ {} &{}\quad \, \cap \Omega _{24}\\ &{}= \emptyset . \end{array} \end{aligned}$$

Combining the above analysis and from (A3) and (A11), we can get that

$$\begin{aligned} \begin{array}{ll} \textrm{V}(M,\,M_1,\,M_2)\cap \Omega _{24}=\emptyset , \ \ \textrm{V}(M,\,M_1)\cap \Omega _{24}\ne \emptyset , \end{array} \end{aligned}$$

which shows that \(E_*\) is a cusp of codimension exactly 4.

It is easy to know that \(\Omega _{25}\subseteq \textrm{V}(M,\,M_1)\cap \Omega _{24}\), where \(\Omega _{25}\) is shown in (1.5), and when \((u_*,\,\alpha ,\,\eta )\in \Omega _{25}\) we have \(M=M_1=0\) and \(M_2\ne 0\), that is \(E_*\) is a cusp of codimension exactly 4.

Appendix B: The proof of \(\overline{d}_{20}<0\) and \(\overline{d}_{41}<0\) in (3.26) of Theorem 2

From (3.26), when \(\mu =0\) we have

$$\begin{aligned} \begin{array}{ll} \overline{d}_{20}=\frac{(\eta +2 u_*^3-u_*^2)\overline{d_{200}}}{u_*^2 \left( \eta +u_*^2\right) \left( -\eta +2 \alpha u_*+u_*^2\right) {}^2},\\ \overline{d}_{41}=\frac{\overline{d_{410}}}{144 u_*^5 \left( \alpha +u_*\right) {}^4 \left( \eta +u_*^2\right) {}^4 \left( \eta +2 u_*^3-u_*^2\right) \left( \eta -2 \alpha u_*-u_*^2\right) \overline{d_{200}}^3}, \end{array} \end{aligned}$$
(B1)

where

$$\begin{aligned} \begin{array}{ll} \overline{d_{200}}=\alpha \eta ^2-3 \alpha ^2 \eta u_*+\alpha ^2 u_*^3-\alpha \eta u_*^3-3 \alpha \eta u_*^2+3 \alpha u_*^5-3 \eta u_*^4+u_*^6, \end{array} \end{aligned}$$

and we omit the expression of \(\overline{d_{410}}\). Notice that, \((u_*,\, \alpha ,\, \eta )\in \Omega _{25}\), \(\Omega _{25}\) is shown in (1.5), that is \((u_*, \alpha )=(u_{*3},\,\alpha _0(u_{*3}))\in I_3\times [\frac{48549816647411}{10^{15}}, \frac{48549816647417}{10^{15}}]\triangleq [u_{10}, u_{11}]\times [\alpha _{10}, \alpha _{11}]\), and \(\eta =\eta _{00}(u_*,\, \alpha )\), where \(\eta _{00}(u_*,\, \alpha )\) is shown in (A15).

We first calculate \(\textrm{sign}\overline{d_{200}}\). Substitute the parameter \(\eta =\eta _{00}(u_*,\, \alpha )\) into \(\overline{d_{200}}\), we can get that \(\overline{d_{200}}\mid _{\eta =\eta _{00}(u_*,\, \alpha )}=\frac{4u_*^3\alpha (u_*+\alpha )^2\overline{d_{201}}}{\eta _{002}^2}\), where \(\overline{d_{201}}\) is a polynomial of \((u_*,\, \alpha )\), we omit the detailed expression. Therefore, we have

$$\begin{aligned} \begin{array}{ll} \textrm{sign}\Big (\overline{d_{200}}\mid _{\eta =\eta _{00}(u_*,\, \alpha )}\Big )=\textrm{sign}\overline{d_{201}}. \end{array} \end{aligned}$$

By using the same method in Steps 3.1–3.2 of Appendix 1, we can get that \(\overline{d_{201}}\in [4.7852072357\) \(861\times 10^{-16},\,4.7852072357899\times 10^{-16}]\) in \([u_{00}, u_{01}]\times [\alpha _{00}, \alpha _{01}]\). Moreover, combining condition (3.5), we know that \(\overline{d_{20}}<0\) for small \(\mu \).

Similarly, we can get that \(\overline{d_{410}}\mid _{\eta =\eta _{00}(u_*,\, \alpha )}=\frac{-16384{u_*}^{21}\alpha \left( \alpha +u_* \right) ^{11}\overline{d_{411}}}{\eta _{002}^{12}}\), where \(\overline{d_{411}}\) is a polynomial of \((u_*,\, \alpha )\), and we omit the detailed expression. Therefore, we have

$$\begin{aligned} \begin{array}{ll} \textrm{sign}\Big (\overline{d_{410}}\mid _{\eta =\eta _{00}(u_*,\, \alpha )}\Big )=-\textrm{sign}\overline{d_{411}}, \end{array} \end{aligned}$$

moreover, we can get that \(\overline{d_{411}}\in [2.113486566436\times 10^{-96},\,2.113486566447\times 10^{-96}]\) in \([u_{00}, u_{01}]\times [\alpha _{00}, \alpha _{01}]\), which shows that \(\overline{d_{41}}<0\) for small \(\mu \).

Appendix C: The proof of nondegeneracy condition (3.29) of Theorem 2

In order to show that the nondegeneracy condition (3.29) holds when \((u_*,\, \alpha ,\, \eta )\in \Omega _{25}\), where \(\Omega _{25}\) is shown in (1.5), we just need to show that \(\overline{f}_{1}\overline{f}_{21}\overline{f}_{22}\ne 0\). Notice that, \(\Omega _{25}\subseteq \textrm{V}(M,\,M_1,\,r_{11},\,r_{12},\) \(r_{22})\cap \Omega _{24}\), so that we first prove \(\textrm{V}(M,\,M_1,\,r_{11},\,r_{12},\,r_{22},\,\overline{f}_{1})\cap \Omega _{24}=\emptyset \).

By eliminating variables in the order \(\eta \prec \alpha \prec u_*\), we have

$$\begin{aligned} \begin{aligned} \textrm{res}(M,\,\overline{f}_1,\,\eta )=&\ 18239578490850508800 \alpha ^{10} u_*^{96} (3 u_*-1){}^6 (\alpha +u_*){}^{40} \\ {}&\ (\alpha +u_*^2){}^{21}r_{31},\\ \textrm{res}(r_{11},\,r_{31},\,\alpha )=&\ C_0(u_*-3){}^{18} (u_*-1){}^{17} u_*^{407} (u_*+5) (3 u_*-1){}^{18}r_{32},\\ \textrm{res}(r_{22},\,r_{32},\,u_*)\ne&\ 0, \end{aligned} \end{aligned}$$

where \(C_0\) is a positive constant, \(r_{31}\) and \(r_{32}\) are polynomials of \((u_*, \alpha )\) and \(u_*\), respectively, and we omit their complicated expressions.

From Appendix 1Step 1, we know that \(\textrm{lcoeff}(M, \eta )> 0\) and \(\textrm{lcoeff}(r_{11}, \alpha )< 0\) in \(\Omega _{25}\). Similarly, from Theorem 1 in Chen and Zhang (2009) we can get that

$$\begin{aligned} \begin{array}{ll} &{}\textrm{V}(M,\,M_1,\,r_{11},\,r_{12},\,r_{22},\,\overline{f}_{1})\cap \Omega _{24}\\ &{}\quad =\textrm{V}(M,\,M_1,\,r_{11},\,r_{12},\,r_{22},\,\overline{f}_{1},\,r_{31},\,r_{32})\cap \Omega _{24}=\emptyset , \end{array} \end{aligned}$$
(C1)

which shows that \(\overline{f}_{1}\ne 0\) in \(\Omega _{25}\).

Second, we prove \(\textrm{V}(M,\,M_1,\,r_{11},\,r_{12},\,r_{22},\,\overline{f}_{21} \overline{f}_{22})\cap \Omega _{24}=\emptyset \). Similarly, by eliminating variables in the order \(\eta \prec \alpha \prec u_*\), we have

$$\begin{aligned} \begin{aligned} \textrm{res}(M,\,\overline{f}_{21}\overline{f}_{22},\,\eta )=&\ 21743271936 \alpha ^7 u_*^{48} (3 u_*-1){}^3 (\alpha +u_*){}^{21} (\alpha +u_*^2){}^{11}r_{41},\\ \textrm{res}(r_{11},\,r_{41},\,\alpha )=&\ 3676258543978604182634496000 (u_*-3)^8 (u_*-1)^7 u_*^{175} \\&\ (3 u_*-1)^9r_{42}r_{22}=0,\\ \textrm{res}(r_{22},\,r_{42},\,u_*)\ne&\ 0, \end{aligned} \end{aligned}$$

where \(r_{41}\) and \(r_{42}\) are polynomials of \((u_*, \alpha )\) and \(u_*\), respectively, and we omit their complicated expressions. From \(\textrm{V}(r_{11},\,r_{41})\ne \emptyset \), we have

$$\begin{aligned} \begin{array}{ll} \textrm{V}(M,\,\overline{f}_{21}\overline{f}_{22})\cap \Omega _{24}=\big (\textrm{V} (M,\,\overline{f}_{21})\cup \textrm{V}(M,\,\overline{f}_{22})\big )\cap \Omega _{24}\ne \emptyset . \end{array} \end{aligned}$$
(C2)

By using pseudo-division, we can get that

$$\begin{aligned} \begin{array}{ll} \textrm{prem}(M,\,\overline{f}_{21},\,\eta )=-u_* \left( \alpha +u_*\right) {}^2 \left( \alpha +u_*^2\right) \left( u_*^2-3 \eta \right) , \end{array} \end{aligned}$$

and from (3.29) we have \(\textrm{lcoeff}(\overline{f}_{21},\,\eta )=\alpha \ne 0\), then we can get that

$$\begin{aligned} \begin{array}{ll} \textrm{V}(M,\,\overline{f}_{21})=\textrm{V}(\overline{f}_{21},\,(u_*^2-3 \eta ))\subseteq \{\eta :\ \eta =\frac{u_*^2}{3}\}. \end{array} \end{aligned}$$

Moreover, from (A17), when \(u_*\in [u_{10}, u_{11}]\) we have \(\frac{u_*^2}{3}\doteq 0.00166258>\eta _{00}(u_{*3},\,\alpha _0(u_{*3}))\), which shows that

$$\begin{aligned} \begin{array}{ll} &{}\textrm{V}(M,\,M_1,\,r_{11},\,r_{12},\,r_{22},\,\overline{f}_{21})\cap \Omega _{24}\\ &{}\quad =\textrm{V}(M,\,M_1,\,r_{11},\,r_{12},\,r_{22},\,\overline{f}_{21},(u_*^2-3 \eta ))\cap \Omega _{24}=\emptyset . \end{array} \end{aligned}$$
(C3)

By using pseudo-division again, we can get that

$$\begin{aligned} \begin{array}{ll} \textrm{prem}(\overline{f}_{22},\,M,\,\eta )=-\frac{9216 u_*^{19} \left( \alpha +u_*\right) {}^6 \left( \alpha +u_*^2\right) {}^4}{\alpha ^7 \left( \alpha +3 u_*\right) {}^{11}}w_{12}, \end{array} \end{aligned}$$

where \(w_{12}\) is 1-order function of \(\eta \), and the coefficients are functions of \((u_*,\,\alpha )\). Then we can get that

$$\begin{aligned} \begin{array}{ll} \textrm{V}(\overline{f}_{22},\,M)=\textrm{V}(M,\,w_{12})\subseteq \textrm{V}(w_{12}). \end{array} \end{aligned}$$

and from \(w_{12}=0\) we can get a unique root \(\eta =\eta _{02}(u_*,\,\alpha )\).

By using the method in Appendix 1 Steps 3.1–3.2, we can also show that \(\eta _{02}(u_*,\,\alpha )\) is well defined and \(\eta _{02}(u_{*3},\,\alpha _0(u_{*3}))\in [0.01413234,\) 0.01413235] in \([u_{10}, u_{11}]\times [\alpha _{10}, \alpha _{11}]\). Hence, we have \(\eta _{02}(u_{*3},\,\alpha _0(u_{*3}))>\eta _0\), that is, \(\big (u_{*3},\,\alpha _0(u_{*3}),\,\eta _{02}\big (u_{*3},\,\alpha _0 (u_{*3})\big )\big )\notin \Omega _{24}\).

Therefore, we can get that

$$\begin{aligned} \begin{array}{ll} &{}\textrm{V}(M,\,M_1,\,r_{11},\,r_{12},\,r_{22},\,\overline{f}_{22})\cap \Omega _{24}\\ &{}\quad \subseteq \textrm{V}(M_1,\,r_{11},\,r_{12},\,r_{22},\,w_{12})\cap \Omega _{24}\\ &{}\quad = \textrm{V}(M_1)\cap \{(u_*, \alpha , \eta ):\, (u_*,\, \alpha ,\, \eta )\\ &{}\quad =(u_{*3},\, \alpha _0(u_{*3}),\,\eta _{02}(u_{*3},\,\alpha _0(u_{*3})))\}\cap \Omega _{24}= \emptyset . \end{array} \end{aligned}$$
(C4)

From (C1), (C3) and (C4), we can obtain that \(\overline{f}_{1}\overline{f}_{21}\overline{f}_{22}\ne 0\) when \((u_*,\, \alpha ,\, \eta )\in \Omega _{25}\), that is the nondegeneracy condition (3.29) holds.

Appendix D: The proof of \(0<\hat{b}_{11}\mid _{\lambda =0}<2\sqrt{2}\) in (3.55)

Notice that, in (3.55) we have

$$\begin{aligned} \begin{array}{ll} \widehat{d}_1=&{} \alpha ^2 \eta ^3-4 \alpha ^3 \eta ^2 u^*-7 \alpha ^2 \eta ^2 (u^*)^2+2 (u^*)^7 (\alpha ^2+2 \eta )+4 \eta (u^*)^5 (2 \alpha ^2+\alpha \\ &{} -\eta )+2 \alpha \eta (u^*)^3 (2 \alpha ^2-\alpha \eta -2 \eta )-\alpha (u^*)^6 (\alpha -8 \eta )+\alpha \eta (u^*)^4 (7 \alpha -8 \eta ),\\ \widehat{d}_2=&{} 3 \alpha ^4 \eta ^4+2 (u^*)^{11} (39 \alpha ^3-50 \alpha \eta )+6 \alpha ^2 \eta ^3 (u^*)^2 (\eta -13 \alpha ^2)+(u^*)^{12} (88 \alpha ^2\\ &{} -2 \alpha -24 \eta )+\alpha ^3 \eta ^3 u^* (11 \eta -12 \alpha ^2)+\alpha (u^*)^9 (28 \alpha ^3+\alpha ^2 (68 \eta +1)\\ &{} -172 \alpha \eta +42 \eta ^2)+\alpha (u^*)^8 (\alpha ^3 (48 \eta +5)-254 \alpha ^2 \eta -6 \alpha \eta (8 \eta +1)\\ &{} +106 \eta ^2)+2 \alpha ^2 (u^*)^7 (3 \alpha ^3-40 \alpha ^2 \eta -\alpha \eta (29 \eta +24)+144 \eta ^2) -4 (12 \alpha ^3\\ &{} +3 \alpha ^2 \eta -50 \alpha \eta +21 \eta ^2)\alpha ^2 \eta (u^*)^5-2 \alpha ^2 \eta ^2 (u^*)^4 (12 \alpha ^3-112 \alpha ^2+17 \alpha \eta \\ &{} +21 \eta )+6 \alpha ^3 \eta ^2 (u^*)^3 (13 \alpha ^2-18 \eta )+2 (u^*)^{10} (6 \alpha ^4+11 \alpha ^3-36 \alpha ^2 \eta \\ &{} -15 \alpha \eta +18 \eta ^2)+2 \alpha \eta (u^*)^6 (12 \alpha ^4-3 \alpha ^3 (2 \eta +15)+101 \alpha ^2 \eta +29 \alpha \eta \\ &{} -21 \eta ^2)+34 \alpha (u^*)^{13}+4 (u^*)^{14}. \end{array}\nonumber \\ \end{aligned}$$
(D1)

First, we prove \(\hat{b}_{11}\mid _{\lambda =0}>0\). Substituting \(\eta =\overline{\eta }\) in (1.7) into \(\widehat{d}_1\), we have

$$\begin{aligned} \begin{array}{ll} \widehat{d}_1=&{}\frac{ \big (\hat{d}_{11}+\hat{d}_{12} \sqrt{(u^*)^2 ((3 \alpha ^2+\alpha (u^*+3) u^*+3 (u^*)^3)^2-4 \alpha u^* (\alpha ^2+3 \alpha (u^*)^2+(u^*)^3))}\big )}{-2 \alpha ^2}\\ {} &{}\times (u^*)^2 (\alpha ^2+\alpha (u^*)^2+\alpha u^*+(u^*)^3), \end{array} \end{aligned}$$

where

$$\begin{aligned} \begin{array}{ll} \hat{d}_{11}=&{}9 \alpha ^5 u^*+6 \alpha ^4 (u^*)^3+34 \alpha ^4 (u^*)^2+36 \alpha ^3 (u^*)^4+45 \alpha ^3 (u^*)^3 +10 \alpha ^2 (u^*)^6\\ &{}+66 \alpha ^2 (u^*)^5+24 \alpha ^2 (u^*)^4+33 \alpha (u^*)^7+52 \alpha (u^*)^6+36 (u^*)^8+\alpha ^3 (u^*)^5,\\ \hat{d}_{12}=&{}-3 \alpha ^3-\alpha ^2 (u^*)^2-9 \alpha ^2 u^*-7 \alpha (u^*)^3-8 \alpha (u^*)^2-12 (u^*)^4. \end{array} \end{aligned}$$

Through simple calculation, we have

$$\begin{aligned} \begin{aligned}&\hat{d}_{11}^2-\hat{d}_{12}^2 (u^*)^2 ((3 \alpha ^2+\alpha (u^*+3) u^*+3 (u^*)^3)^2-4 \alpha u^* (\alpha ^2+3 \alpha (u^*)^2+(u^*)^3))\\&\quad =-32 \alpha ^2 (u^*)^4 (\alpha +u^*)^3 (\alpha ^3+6 \alpha ^2 (u^*)^2+\alpha (u^*)^4+4 \alpha (u^*)^3+4 (u^*)^5)<0, \end{aligned} \end{aligned}$$

and \(\hat{d}_{12}<0\), which show that \(\widehat{d}_1>0\).

Similarly, we can prove that \(\widehat{d}_2<0\). Combining the condition \(\eta =\overline{\eta }\) and \(0<u^*<\frac{1}{3}\), we have \(\hat{b}_{11}\mid _{\lambda =0}>0\).

Second, we prove that \(\hat{b}_{11}\mid _{\lambda =0}<2\sqrt{2}\), from (3.55), which is equivalent to proving that

$$\begin{aligned} \begin{array}{ll} &{}72 \hat{d}_1^3 u^* (\alpha +u^*) (\eta +2 (u^*)^3-(u^*)^2)+\hat{d}_2^2 (\eta +(u^*)^2)^2\\[0.5ex] &{}\quad =-\frac{ \big (\hat{d}_{21}+\hat{d}_{22} \sqrt{(u^*)^2 ((3 \alpha ^2+\alpha (u^*+3) u^*+3 (u^*)^3)^2-4 \alpha u^* (\alpha ^2+3 \alpha (u^*)^2+(u^*)^3))}\big )}{2 \alpha ^7}\\ &{}\qquad \times 9 (u^*)^9 (\alpha +u^*)^5 (\alpha +(u^*)^2)^3 <0, \end{array} \end{aligned}$$

where

$$\begin{aligned} \hat{d}_{21}=&-6561 \alpha ^{17} u^*-729 \alpha ^{16} ((u^*)^2 (27 u^*+67))-81 \alpha ^{15} ((u^*)^3 (297 (u^*)^2\\ {}&+2121 u^*+1385))-9 \alpha ^{14} ((u^*)^4 (1755 (u^*)^3+27819 (u^*)^2+54939 u^*\\&-13213))+\alpha ^{13} (-6075 (u^*)^4-196857 (u^*)^3-902097 (u^*)^2+173511 u^*\\&+1295173) (u^*)^5-\alpha ^{12} (1377 (u^*)^5+90441 (u^*)^4+883203 (u^*)^3\\&+311171 (u^*)^2-5142519 u^*-3530471) (u^*)^6+\alpha ^{11} (-171 (u^*)^6\\&-24339 (u^*)^5-501571 (u^*)^4-934249 (u^*)^3+8332381 (u^*)^2\\&+16569133 u^*+5489045) (u^*)^7+\alpha ^{10} (-9 (u^*)^7-3561 (u^*)^6\\&-165393 (u^*)^5-913593 (u^*)^4+6980391 (u^*)^3+32872783 (u^*)^2\\&+29149703 u^*+5440095) (u^*)^8+\alpha ^9 (-219 (u^*)^7-29363 (u^*)^6\\&-441427 (u^*)^5+3095111 (u^*)^4+35618269 (u^*)^3+66318797 (u^*)^2\\&+32229157 u^*+3444736) (u^*)^9+\alpha ^8 (-2169 (u^*)^7-106569 (u^*)^6\\&+611581 (u^*)^5+22621213 (u^*)^4+83767639 (u^*)^3+82507335 (u^*)^2\\&+22611288 u^*+1290240) (u^*)^{10}+\alpha ^7 (-10251 (u^*)^7-489 (u^*)^6\\&+8326479 (u^*)^5+63373303 (u^*)^4+118457877 (u^*)^3+64564384 (u^*)^2\\&+9351168 u^*+221184) (u^*)^{11}+\alpha ^6 (-12315 (u^*)^6+1609645 (u^*)^5\\&+28651757 (u^*)^4+103141317 (u^*)^3+104191032 (u^*)^2+29649136 u^*\\&+1769472) (u^*)^{13}+\alpha ^5 (120231 (u^*)^5+7137447 (u^*)^4+54545143 (u^*)^3\\&+102913984 (u^*)^2+53464944 u^*+6225920) (u^*)^{15}+\alpha ^4 (749493 (u^*)^4\\&+16252821 (u^*)^3+62466696 (u^*)^2+59444000 u^*+12527104) (u^*)^{17}\\&+3 \alpha ^3 (705861 (u^*)^3+7236576 (u^*)^2+13658976 u^*+5208064) (u^*)^{19}\\&+216 \alpha ^2 (15687 (u^*)^2+75738 u^*+56192) (u^*)^{21}+3888 \alpha (765 u^*\\&+1408) (u^*)^{23}+1119744 (u^*)^{25}, \end{aligned}$$

and \(\hat{d}_{22}\) is also a polynomial of \((\alpha ,\,u^*)\), we omit its expression, and \(\hat{d}_1\) and \(\hat{d}_2\) are showing in (D1).

By simple calculation, we have

where

$$\begin{aligned} \begin{array}{ll} \hat{d}_{23}&{}= \alpha ^5 (-3 u^*-5)+\alpha ^4 (-3 (u^*)^2-30 u^*+13) u^*+\alpha ^3 (-(u^*)^2+81 u^*\\ &{}\quad +10) (u^*)^2+4 \alpha ^2 (9 u^*+35) (u^*)^4+2 \alpha (37 u^*+32) (u^*)^5+64 (u^*)^7. \end{array} \end{aligned}$$

Notice that, \(\hat{d}_{21}\) is a 17-order polynomial of \(\alpha \) with coefficients are functions of \(u^*\), where the coefficients of (0–13)-order terms are positive, (15-17)-order terms are negative and 14-order term is uncertain when \(0<u^*<\frac{1}{3}\). By using the Descartes’ rule of signs, we know that \(\hat{d}_{21}\) has a unique positive real root \(\widehat{\alpha }_{1}\), and

$$\begin{aligned} \begin{array}{ll} \hat{d}_{21}>0\ (=0,\ \textrm{or}\,<0)\quad \textrm{if}\quad 0<\alpha <\widehat{\alpha }_{1}\ (\alpha =\widehat{\alpha }_{1},\ \textrm{or}\ \alpha >\widehat{\alpha }_{1}). \end{array} \end{aligned}$$

Similarly, \(\hat{d}_{22}\) (or \(\hat{d}_{23}\)) also has a unique positive real root \(\widehat{\alpha }_{2}\) (or \(\widehat{\alpha }_{3}\)), and

(D2)

Hence, by using the same method as in the analysis of \(\textrm{sign}(J)\) in proof (II) of Theorem 3, we can get that \(\widehat{\alpha }_2<\widehat{\alpha }_3<\widehat{\alpha }_1\). Therefore, we can get that \( \hat{d}_{21}+\hat{d}_{22} \sqrt{(u^*)^2 ((3 \alpha ^2+\alpha (u^*+3) u^*+3 (u^*)^3)^2-4 \alpha u^* (\alpha ^2+3 \alpha (u^*)^2+(u^*)^3))}>0, \) then we have \(72 \hat{d}_1^3 u^* (\alpha +u^*) (\eta +2 (u^*)^3-(u^*)^2)+\hat{d}_2^2 (\eta +(u^*)^2)^2<0\), that is \(\hat{b}_{11}\mid _{\lambda =0}<2\sqrt{2}\). We finish the proof.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Huang, J. & Wang, H. Bifurcations driven by generalist and specialist predation: mathematical interpretation of Fennoscandia phenomenon. J. Math. Biol. 86, 94 (2023). https://doi.org/10.1007/s00285-023-01929-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00285-023-01929-1

Keywords

Mathematics Subject Classification

Navigation