Skip to main content
Log in

Closed form modeling of evolutionary rates by exponential Brownian functionals

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Accurate estimation of species divergence times from the analysis of genetic sequences relies on probabilistic models of evolution of the rate of molecular evolution. Importantly, while these models describe the sample paths of the substitution rates along a phylogenetic tree, only the (random) average rate can be estimated on each edge. For mathematical convenience, the stochastic nature of these averages is generally ignored. In this article we derive the probabilistic distribution of the average substitution rate assuming a geometric Brownian motion for the sample paths, and we investigate the corresponding error bounds via numerical simulations. In particular we confirm the validity of the gamma approximation proposed in Guindon (Syst Biol 62(1):22–34, 2013) for “small” values of the autocorrelation parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Albanese C, Lawi S (2005) Laplace transforms for integrals of Markov processes. Markov Process Relat Fields 11(4):677–724

    MATH  MathSciNet  Google Scholar 

  • Aris-Brosou S, Yang Z (2002) Effects of models of rate evolution on estimation of divergence dates with special reference to the metazoan 18S ribosomal RNA phylogeny. Syst Biol 51:703–714

    Article  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  Google Scholar 

  • Gernhard T (2008) The conditioned reconstructed process. J Theor Biol 253(4):769–778

    Article  MathSciNet  Google Scholar 

  • Guindon S (2013) From trajectories to averages: an improved description of the heterogeneity of substitution rates along lineages. Syst Biol 62(1):22–34

    Article  Google Scholar 

  • Ishiyama K (2005) Methods for evaluating density functions of exponential functionals represented as integrals of geometric Brownian motion. Methodol Comput Appl Probab 7(3):271–283

    Article  MATH  MathSciNet  Google Scholar 

  • Karlin S, Taylor HM (1981) A second course in stochastic processes. Academic Press Inc., New York

    MATH  Google Scholar 

  • Kingman JFC (1982) The coalescent. Stoch Process Appl 13:235–248

    Article  MATH  MathSciNet  Google Scholar 

  • Kishino H, Hasegawa M (1989) Converting distance to time: application to human evolution. Methods Enzymol 183:550–570

    Article  Google Scholar 

  • Kishino H, Thorne JL, Bruno WJ (2001) Performance of a divergence time estimation method under a probabilistic model of rate evolution. Mol Biol Evol 18(3):352–361

    Article  Google Scholar 

  • Kumar S (2005) Molecular clocks: four decades of evolution. Nat Rev Genet 6(8):654–662

    Article  Google Scholar 

  • Lepage T, Lawi S, Tupper P, Bryant D (2006) Continuous and tractable models for the variation of evolutionary rates. Math Biosci 199:216–233

    Article  MATH  MathSciNet  Google Scholar 

  • Lepage T, Bryant D, Philippe H, Lartillot N (2007) A general comparison of relaxed molecular clock models. Mol Biol Evol 24:2669–2680

    Article  Google Scholar 

  • Matsumoto H, Yor M (2005) Exponential functionals of Brownian motion. I. Probability laws at fixed time. Probab Surv 2:312–347 (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  • Nee S, May R, Harvey P (1994) The reconstructed evolutionary process. Philos Trans R Soc B 344(1309):305–311

    Article  Google Scholar 

  • Ohta T, Kimura M (1971) On the constancy of the evolutionary rate of cistrons. J Mol Evol 1(1):18–25

    Article  Google Scholar 

  • Privault N, Uy WT (2013) Monte Carlo computation of the Laplace transform of exponential Brownian functionals. Methodol Comput Appl Probab 15(3):511–524

    Article  MATH  MathSciNet  Google Scholar 

  • Rannala B, Yang Z (2007) Inferring speciation times under an episodic molecular clock. Syst Biol 56:453–466

    Article  Google Scholar 

  • Sanderson M (1997) A nonparametric approach to estimating divergence times in the absence of rate constancy. Mol Biol Evol 14:1218–1231

    Article  Google Scholar 

  • Sarich V, Wilson A (1967) Immunological time scale for hominid evolution. Science 158:1200–1203

    Article  Google Scholar 

  • Thompson EA (1975) Human evolutionary trees. CUP Archive, Cambridge

  • Thorne J, Kishino H, Painter I (1998) Estimating the rate of evolution of the rate of molecular evolution. Mol Biol Evol 15:1647–1657

    Article  Google Scholar 

  • Tuffley C, Steel M (1998) Modeling the covarion hypothesis of nucleotide substitution. Math Biosci 147(1):63–91

    Article  MATH  MathSciNet  Google Scholar 

  • Watson GN (1995) A treatise on the theory of Bessel functions. Cambridge University Press, Cambridge (reprint of the second (1944) edition)

  • Yor M (1992) On some exponential functionals of Brownian motion. Adv Appl Probab 24(3):509–531

    Article  MATH  MathSciNet  Google Scholar 

  • Zuckerkandl E, Pauling L (1962) Molecular disease, evolution, and genic heterogeneity. In: Kasha M, Pullman B (eds) Horizons in biochemistry. Elsevier, Amsterdam, pp 189–225

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Privault.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Privault, N., Guindon, S. Closed form modeling of evolutionary rates by exponential Brownian functionals. J. Math. Biol. 71, 1387–1409 (2015). https://doi.org/10.1007/s00285-015-0863-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-015-0863-6

Keywords

Mathematics Subject Classification

Navigation