Skip to main content
Log in

Models for actin polymerization motors

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

Actin polymerization drives cell membrane protrusions and the propulsion of intracellular pathogens. The molecular mechanisms driving actin polymerization are not yet fully understood. Various mathematical models have been proposed to explain how cells convert chemical energy released upon actin polymerization into a pushing force on a surface. These models have attempted to explain puzzling properties of actin-based motility, including persistent attachment of the network to the membrane during propulsion and the interesting trajectories of propelled particles. These models fall generally into two classes: those requiring filament (+)-ends to fluctuate freely from the membrane to add subunits, and those where filaments elongate with their (+)-ends persistently associated with surface through filament end-tracking proteins (“actoclampin” models). This review compares and contrasts the key predictions of these two classes of models with regard to force–velocity profiles, and evaluates them with respect to experiments with biomimetic particles, and the experimental evidence on the role of end-tracking proteins such as formins and nucleation-promoting factors in actin-based motility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bray D.: Cell Movements: from Molecules to Motility. 2nd edn. Garland Publishing, New York (2001)

    Google Scholar 

  2. Stevens J.M., Galyov E.E., Stevens M.P.: Actin-dependent movement of bacterial pathogens. Nat. Rev. Microbiol. 4, 91–101 (2006)

    Article  Google Scholar 

  3. Kuo S.C., McGrath J.L.: Steps and fluctuations of Listeria monocytogenes during actin-based motility. Nature 407, 1026–1029 (2000)

    Article  Google Scholar 

  4. McGrath J.L., Eungdamrong N.J., Fisher C.I., Peng F., Mahadevan L., Mitchison T.J., Kuo S.C.: The force–velocity relationship for the actin-based motility of Listeria monocytogenes. Curr. Biol. 13, 329–332 (2003)

    Article  Google Scholar 

  5. Giardini P.A., Fletcher D.A., Theriot J.A.: Compression forces generated by actin comet tails on lipid vesicles. Proc. Natl. Acad. Sci. USA 100, 6493–6498 (2003)

    Article  Google Scholar 

  6. Upadhyaya A., Chabot J.R., Andreeva A., Samadani A., Oudenaarden A.: Probing polymerization forces by using actin-propelled lipid vesicles. Proc. Natl. Acad. Sci. USA 100, 4521–4526 (2003)

    Article  Google Scholar 

  7. Boukellal H., Campas O., Joanny J.F., Prost J., Sykes C.: Soft Listeria: actin-based propulsion of liquid drops. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69, 061906 (2004)

    Google Scholar 

  8. Zeile W.L., Zhang F., Dickinson R.B., Purich D.L.: Listeria’s right-handed helical rocket-tail trajectories: mechanistic implications for force generation in actin-based motility. Cell Motil. Cytoskelet. 60, 121–128 (2005)

    Article  Google Scholar 

  9. Robbins J.R., Theriot J.A.: Listeria monocytogenes rotates around its long axis during actin-based motility. Curr. Biol. 13, R754–756 (2003)

    Article  Google Scholar 

  10. Bernheim-Groswasser A., Wiesner S., Golsteyn R.M., Carlier M.F., Sykes C.: The dynamics of actin-based motility depend on surface parameters. Nature 417, 308–311 (2002)

    Article  Google Scholar 

  11. Bernheim-Groswasser A., Prost J., Sykes C.: Mechanism of actin-based motility: a dynamic state diagram. Biophys. J. 89, 1411–1419 (2005)

    Article  Google Scholar 

  12. Pollard T.D., Borisy G.G: Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003)

    Article  Google Scholar 

  13. Ponti A., Machacek M., Gupton S.L., Waterman-Storer C.M., Danuser G.: Two distinct actin networks drive the protrusion of migrating cells. Science 305, 1782–1786 (2004)

    Article  Google Scholar 

  14. Bugyi, B., Le Clainche, C., Romet-Lemonne, G., Carlier, M.F.: How do in vitro reconstituted actin-based motility assays provide insight into in vivo behavior? FEBS Lett. (2008)

  15. Pollard T.D., Blanchoin L., Mullins R.D.: Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu. Rev. Biophys. Biomol. Struct. 29, 545–576 (2000)

    Article  Google Scholar 

  16. Hill T.L.: Microfilament or microtubule assembly or disassembly against a force. Proc. Natl. Acad. Sci. USA 78, 5613–5617 (1981)

    Article  Google Scholar 

  17. Cooper J.A.: The role of actin polymerization in cell motility. Annu. Rev. Physiol. 53, 585–605 (1991)

    Article  Google Scholar 

  18. Carlier M.F., Laurent V., Santolini J., Melki R., Didry D., Xia G.X., Hong Y., Chua N.H., Pantaloni D.: Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J. Cell Biol. 136, 1307–1322 (1997)

    Article  Google Scholar 

  19. Mogilner A., Oster G.: Cell motility driven by actin polymerization. Biophys. J. 71, 3030–3045 (1996)

    Article  Google Scholar 

  20. Mogilner A., Edelstein-Keshet L.: Regulation of actin dynamics in rapidly moving cells: a quantitative analysis. Biophys. J. 83, 1237–1258 (2002)

    Article  Google Scholar 

  21. Mogilner A., Oster G.: Polymer motors: pushing out the front and pulling up the back. Curr. Biol. 13, R721–733 (2003)

    Article  Google Scholar 

  22. Noireaux V., Golsteyn R.M., Friederich E., Prost J., Antony C., Louvard D., Sykes C.: Growing an actin gel on spherical surfaces. Biophys. J. 78, 1643–1654 (2000)

    Article  Google Scholar 

  23. Abraham V.C., Krishnamurthi V., Taylor D.L., Lanni F.: The actin-based nanomachine at the leading edge of migrating cells. Biophys. J. 77, 1721–1732 (1999)

    Article  Google Scholar 

  24. Pring M., Weber A., Bubb M.R.: Profilin-actin complexes directly elongate actin filaments at the barbed end. Biochemistry 31, 1827–1836 (1992)

    Article  Google Scholar 

  25. Romero S., Didry D., Larquet E., Boisset N., Pantaloni D., Carlier M.F.: How ATP hydrolysis controls filament assembly from profilin-actin: implication for formin processivity. J. Biol. Chem. 282, 8435–8445 (2007)

    Article  Google Scholar 

  26. Carlier M.F., Jean C., Rieger K.J., Lenfant M., Pantaloni D.: Modulation of the interaction between G-actin and thymosin beta 4 by the ATP/ADP ratio: possible implication in the regulation of actin dynamics. Proc. Natl. Acad. Sci. USA 90, 5034–5038 (1993)

    Article  Google Scholar 

  27. Kinosian H.J., Selden L.A., Gershman L.C., Estes J.E.: Actin filament barbed end elongation with nonmuscle MgATP-actin and MgADP-actin in the presence of profilin. Biochemistry 41, 6734–6743 (2002)

    Article  Google Scholar 

  28. Yarmola E.G., Bubb M.R.: Profilin: emerging concepts and lingering misconceptions. Trends Biochem. Sci. 31, 197–205 (2006)

    Article  Google Scholar 

  29. Kang F., Purich D.L., Southwick F.S.: Profilin promotes barbed-end actin filament assembly without lowering the critical concentration. J. Biol. Chem. 274, 36963–36972 (1999)

    Article  Google Scholar 

  30. Howard J.: Mechanics of Motor Proteins and the Cytoskeleton. Sinauer, Sunderland (2001)

    Google Scholar 

  31. Dickinson R.B., Caro L., Purich D.L.: Force generation by cytoskeletal filament end-tracking proteins. Biophys. J. 87, 2838–2854 (2004)

    Article  Google Scholar 

  32. Kinosian H.J., Selden L.A., Gershman L.C., Estes J.E.: Interdependence of profilin, cation, and nucleotide binding to vertebrate non-muscle actin. Biochemistry 39, 13176–13188 (2000)

    Article  Google Scholar 

  33. Peskin C.S., Odell G.M., Oster G.F.: Cellular motions and thermal fluctuations: the Brownian ratchet. Biophys. J. 65, 316–324 (1993)

    Article  Google Scholar 

  34. Mogilner A., Oster G.: Force Generation by Actin Polymerization II: The Elastic Ratchet and Tethered Filaments. Biophys. J. 84, 1591–1605 (2003)

    Article  Google Scholar 

  35. Gerbal F., Laurent V., Ott A., Carlier M.F., Chaikin P., Prost J.: Measurement of the elasticity of the actin tail of Listeria monocytogenes. Eur. Biophys. J. 29, 134–140 (2000)

    Article  Google Scholar 

  36. Bell G.I.: Models for the specific adhesion of cells to cells. Science 200, 618–627 (1978)

    Article  Google Scholar 

  37. Trichet L., Campas O., Sykes C., Plastino J.: VASP governs actin dynamics by modulating filament anchoring. Biophys. J. 92, 1081–1089 (2007)

    Article  Google Scholar 

  38. Gerbal F., Chaikin P., Rabin Y., Prost J.: An elastic analysis of Listeria monocytogenes propulsion. Biophys. J. 79, 2259–2275 (2000)

    Article  Google Scholar 

  39. Soo F.S., Theriot J.A.: Adhesion controls bacterial actin polymerization-based movement. Proc. Natl. Acad. Sci. USA 102, 16233–16238 (2005)

    Article  Google Scholar 

  40. Parekh S.H., Chaudhuri O., Theriot J.A., Fletcher D.A.: Loading history determines the velocity of actin-network growth. Nat. Cell Biol. 7, 1119–1123 (2005)

    Article  Google Scholar 

  41. Prass M., Jacobson K., Mogilner A., Radmacher M.: Direct measurement of the lamellipodial protrusive force in a migrating cell. J. Cell Biol. 174, 767–772 (2006)

    Article  Google Scholar 

  42. Marcy Y., Prost J., Carlier M.F., Sykes C.: Forces generated during actin-based propulsion: a direct measurement by micromanipulation. Proc. Natl. Acad. Sci. USA 101, 5992–5997 (2004)

    Article  Google Scholar 

  43. Dickinson R.B., Purich D.L.: Diffusion rate limitations in actin-based propulsion of hard and deformable particles. Biophys. J. 91, 1548–1563 (2006)

    Article  Google Scholar 

  44. Carlsson A.E.: Growth velocities of branched actin networks. Biophys. J. 84, 2907–2918 (2003)

    Article  Google Scholar 

  45. Wiesner S., Helfer E., Didry D., Ducouret G., Lafuma F., Carlier M.F., Pantaloni D.: A biomimetic motility assay provides insight into the mechanism of actin-based motility. J. Cell Biol. 160, 387–398 (2003)

    Article  Google Scholar 

  46. Paluch E., Gucht J., Joanny J.F., Sykes C.: Deformations in actin comets from rocketing beads. Biophys. J. 91, 3113–3122 (2006)

    Article  Google Scholar 

  47. Brieher W.M., Coughlin M., Mitchison T.J.: Fascin-mediated propulsion of Listeria monocytogenes independent of frequent nucleation by the Arp2/3 complex. J. Cell Biol. 165, 233–242 (2004)

    Article  Google Scholar 

  48. Co C., Wong D.T., Gierke S., Chang V., Taunton J.: Mechanism of actin network attachment to moving membranes: barbed end capture by N-WASP WH2 domains. Cell 128, 901–913 (2007)

    Article  Google Scholar 

  49. Gholami A., Falke M., Frey E.: Velocity oscillations in actin-based motility. New J. Phys. 10, 1–12 (2008)

    Article  Google Scholar 

  50. Delatour V., Helfer E., Didry D., Le K.H., Gaucher J.F., Carlier M.F., Romet-Lemonne G.: Arp2/3 controls the motile behavior of N-WASP-functionalized GUVs and modulates N-WASP surface distribution by mediating transient links with actin filaments. Biophys. J. 94, 4890–4905 (2008)

    Article  Google Scholar 

  51. Dickinson R.B., Purich D.L.: Clamped-filament elongation model for actin-based motors. Biophys. J. 82, 605–617 (2002)

    Article  Google Scholar 

  52. Chereau, D., Dominguez, R.: Understanding the role of the G-actin-binding domain of Ena/VASP in actin assembly. J. Struct. Biol. (2006)

  53. Romero S., Le Clainche C., Didry D., Egile C., Pantaloni D., Carlier M.F.: Formin is a processive motor that requires profilin to accelerate actin assembly and associated ATP hydrolysis. Cell 119, 419–429 (2004)

    Article  Google Scholar 

  54. Vavylonis D., Kovar D.R., O’Shaughnessy B., Pollard T.D.: Model of formin-associated actin filament elongation. Mol. Cell 21, 455–466 (2006)

    Article  Google Scholar 

  55. Paul A., Pollard T.: The role of the FH1 domain and profilin in formin-mediated actin-filament elongation and nucleation. Curr. Biol. 18, 9–19 (2008)

    Article  Google Scholar 

  56. Wei J., Leyh T.S.: Isomerization couples chemistry in the ATP sulfurylase-GTPase system. Biochemistry 38, 6311–6316 (1999)

    Article  Google Scholar 

  57. Eisenberg E., Hill T.L.: Muscle contraction and free energy transduction in biological systems. Science 227, 999–1006 (1985)

    Article  Google Scholar 

  58. Chereau D., Kerff F., Graceffa P., Grabarek Z., Langsetmo K., Dominguez R.: Actin-bound structures of Wiskott-Aldrich syndrome protein (WASP)-homology domain 2 and the implications for filament assembly. Proc. Natl. Acad. Sci. USA 102, 16644–16649 (2005)

    Article  Google Scholar 

  59. Zalevsky J., Lempert L., Kranitz H., Mullins R.D.: Different WASP family proteins stimulate different Arp2/3 complex-dependent actin-nucleating activities. Curr. Biol. 11, 1903–1913 (2001)

    Article  Google Scholar 

  60. Stevens M.P., Stevens J.M., Jeng R.L., Taylor L.A., Wood M.W., Hawes P., Monaghan P., Welch M.D., Galyov E.E.: Identification of a bacterial factor required for actin-based motility of Burkholderia pseudomallei. Mol. Microbiol. 56, 40–53 (2005)

    Article  Google Scholar 

  61. Gouin E., Egile C., Dehoux P., Villiers V., Adams J., Gertler F., Li R., Cossart P.: The RickA protein of Rickettsia conorii activates the Arp2/3 complex. Nature 427, 457–461 (2004)

    Article  Google Scholar 

  62. Mattila P.K., Salminen M., Yamashiro T., Lappalainen P.: Mouse MIM, a tissue-specific regulator of cytoskeletal dynamics, interacts with ATP-actin monomers through its C-terminal WH2 domain. J. Biol. Chem. 278, 8452–8459 (2003)

    Article  Google Scholar 

  63. Hertzog M., Yarmola E.G., Didry D., Bubb M.R., Carlier M.F.: Control of actin dynamics by proteins made of beta-thymosin repeats: the actobindin family. J. Biol. Chem. 277, 14786–14792 (2002)

    Article  Google Scholar 

  64. Zhu J., Carlsson A.E.: Growth of attached actin filaments. Eur. Phys. J. E. Soft Matter 21, 209–222 (2006)

    Article  MATH  Google Scholar 

  65. Kovar D.R., Harris E.S., Mahaffy R., Higgs H.N., Pollard T.D.: Control of the assembly of ATP- and ADP-actin by formins and profilin. Cell 124, 423–435 (2006)

    Article  Google Scholar 

  66. Barzik M., Kotova T.I., Higgs H.N., Hazelwood L., Hanein D., Gertler F.B., Schafer D.A.: Ena/VASP proteins enhance actin polymerization in the presence of barbed end capping proteins. J. Biol. Chem. 280, 28653–28662 (2005)

    Article  Google Scholar 

  67. Kang F., Laine R.O., Bubb M.R., Southwick F.S., Purich D.L.: Profilin interacts with the Gly-Pro-Pro-Pro-Pro-Pro sequences of vasodilator-stimulated phosphoprotein (VASP): implications for actin-based Listeria motility. Biochemistry 36, 8384–8392 (1997)

    Article  Google Scholar 

  68. Grenklo S., Geese M., Lindberg U., Wehland J., Karlsson R., Sechi A.S.: A crucial role for profilin-actin in the intracellular motility of Listeria monocytogenes. EMBO Rep. 4, 523–529 (2003)

    Article  Google Scholar 

  69. Dickinson R.B., Southwick F.S., Purich D.L.: A direct-transfer polymerization model explains how the multiple profilin-binding sites in the actoclampin motor promote rapid actin-based motility. Arch. Biochem. Biophys. 406, 296–301 (2002)

    Article  Google Scholar 

  70. Haffner C., Jarchau T., Reinhard M., Hoppe J., Lohmann S.M., Walter U.: Molecular cloning, structural analysis and functional expression of the proline-rich focal adhesion and microfilament-associated protein VASP. Embo J. 14, 19–27 (1995)

    Google Scholar 

  71. Rivero-Lezcano O.M., Marcilla A., Sameshima J.H., Robbins K.C.: Wiskott-Aldrich syndrome protein physically associates with Nck through Src homology 3 domains. Mol. Cell Biol. 15, 5725–5731 (1995)

    Google Scholar 

  72. She H.Y., Rockow S., Tang J., Nishimura R., Skolnik E.Y., Chen M., Margolis B., Li W.: Wiskott-Aldrich syndrome protein is associated with the adapter protein Grb2 and the epidermal growth factor receptor in living cells. Mol. Biol. Cell 8, 1709–1721 (1997)

    Google Scholar 

  73. Wu Y., Spencer S.D., Lasky L.A.: Tyrosine phosphorylation regulates the SH3-mediated binding of the Wiskott-Aldrich syndrome protein to PSTPIP, a cytoskeletal-associated protein. J. Biol. Chem. 273, 5765–5770 (1998)

    Article  Google Scholar 

  74. Oda A., Ochs H.D., Lasky L.A., Spencer S., Ozaki K., Fujihara M., Handa M., Ikebuchi K., Ikeda H.: CrkL is an adapter for Wiskott–Aldrich syndrome protein and Syk. Blood 97, 2633–2639 (2001)

    Article  Google Scholar 

  75. Rohatgi R., Nollau P., Ho H.Y., Kirschner M.W., Mayer B.J.: Nck and phosphatidylinositol 4,5-bisphosphate synergistically activate actin polymerization through the N-WASP-Arp2/3 pathway. J. Biol. Chem. 276, 26448–26452 (2001)

    Article  Google Scholar 

  76. Rivera G.M., Briceno C.A., Takeshima F., Snapper S.B., Mayer B.J.: Inducible clustering of membrane-targeted SH3 domains of the adaptor protein Nck triggers localized actin polymerization. Curr. Biol. 14, 11–22 (2004)

    Article  Google Scholar 

  77. Plastino J., Lelidis I., Prost J., Sykes C.: The effect of diffusion, depolymerization and nucleation promoting factors on actin gel growth. Eur. Biophys. J. 33, 310–320 (2004)

    Article  Google Scholar 

  78. Soo F.S., Theriot J.A.: Large-scale quantitative analysis of sources of variation in the actin polymerization-based movement of Listeria monocytogenes. Biophys. J. 89, 703–723 (2005)

    Article  Google Scholar 

  79. Shaevitz J.W., Fletcher D.A.: Load fluctuations drive actin network growth. Proc. Natl. Acad. Sci. USA 104, 15688–15692 (2007)

    Article  Google Scholar 

  80. Plastino J., Olivier S., Sykes C.: Actin filaments align into hollow comets for rapid VASP-mediated propulsion. Curr. Biol. 14, 1766–1771 (2004)

    Article  Google Scholar 

  81. Zigmond S.H., Evangelista M., Boone C., Yang C., Dar A.C., Sicheri F., Forkey J., Pring M.: Formin leaky cap allows elongation in the presence of tight capping proteins. Curr. Biol. 13, 1820–1823 (2003)

    Article  Google Scholar 

  82. Higashida C., Miyoshi T., Fujita A., Oceguera-Yanez F., Monypenny J., Andou Y., Narumiya S., Watanabe N.: Actin polymerization-driven molecular movement of mDia1 in living cells. Science 303, 2007–2010 (2004)

    Article  Google Scholar 

  83. Kovar D.R., Pollard T.D.: Insertional assembly of actin filament barbed ends in association with formins produces piconewton forces. Proc. Natl. Acad. Sci. USA 101, 14725–14730 (2004)

    Article  Google Scholar 

  84. Footer M.J., Kerssemakers J.W., Theriot J.A., Dogterom M.: Direct measurement of force generation by actin filament polymerization using an optical trap. Proc. Natl. Acad. Sci. USA 104, 2181–2186 (2007)

    Article  Google Scholar 

  85. Kozlov M.M., Bershadsky A.D.: Processive capping by formin suggests a force-driven mechanism of actin polymerization. J. Cell Biol. 167, 1011–1017 (2004)

    Article  Google Scholar 

  86. Cameron L.A., Svitkina T.M., Vignjevic D., Theriot J.A., Borisy G.G.: Dendritic organization of actin comet tails. Curr. Biol. 11, 130–135 (2001)

    Article  Google Scholar 

  87. Samarin S., Romero S., Kocks C., Didry D., Pantaloni D., Carlier M.F.: How VASP enhances actin-based motility. J. Cell Biol. 163, 131–142 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard B. Dickinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dickinson, R.B. Models for actin polymerization motors. J. Math. Biol. 58, 81–103 (2009). https://doi.org/10.1007/s00285-008-0200-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-008-0200-4

Keywords

Mathematics Subject Classification (2000)

Navigation