Skip to main content
Log in

Derivation and analysis of a system modeling the chemotactic movement of hematopoietic stem cells

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

It has been shown that hematopoietic stem cells migrate in vitro and in vivo following the gradient of a chemotactic factor produced by stroma cells. In this paper, a quantitative model for this process is presented. The model consists of chemotaxis equations coupled with an ordinary differential equation on the boundary of the domain and subjected to nonlinear boundary conditions. The existence and uniqueness of a local solution is proved and the model is simulated numerically. It turns out that for adequate parameter ranges, the qualitative behavior of the stem cells observed in the experiment is in good agreement with the numerical results. Our investigations represent a first step in the process of elucidating the mechanism underlying the homing of hematopoietic stem cells quantitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aiuti A., Webb I.J., Bleul C., Springer T. and Gutierrez-Ramos J.C. (1997). The Chemokine SDF-1 Is a Chemoattractant for Human CD34+ Hematopoietic Progenitor Cells and Provides a New Mechanism to Explain the Mobilization of CD34+ Progenitors to Peripheral Blood. J. Exp. Med. 185: 111–120

    Article  Google Scholar 

  2. Evans L. (1999). Partial Differential Equations. AMS, Providence

    Google Scholar 

  3. Gajewski H., Gröger K. and Zacharias K. (1974). Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Akademie-Verlag, Berlin

    MATH  Google Scholar 

  4. Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Monographs and Studies in Mathematics, 24, Pitman (1985)

  5. Horstmann D. (2004). From 1970 until present: The Keller–Segel model in chemotaxis and its consequences. Jahresbericht der DMV 105: 103–165

    MathSciNet  Google Scholar 

  6. Jäger W. and Luckhaus S. (1992). On explosions of solutions to a system of partial differential equations. Trans. AMS 329: 819–824

    Article  MATH  Google Scholar 

  7. Kettemann A. (2006). Die lokale Existenz und Eindeutigkeit der Lösung eines Chemotaxis-Modells für hämatopoietische Stammzellen. Universität Stuttgart, Diplomarbeit

    Google Scholar 

  8. Ladyženskaya, O., Solonnikov, V., Ural’ceva, N.: Linear and Quasilinear Equations of Parabolic Type. AMS, Translations of Mathematical Monographs, 23 (1968)

  9. Lions J. (1969). Quelque méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris

    Google Scholar 

  10. Lions, J., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applications. 1, Springer, Heidelberg (1972)

  11. Nagai T. (1995). Blow-up of radially symmetric solutions to a chemotaxis system. Adv. Math. Sci. Appl. 5: 581–601

    MATH  MathSciNet  Google Scholar 

  12. Neuss-Radu M. and Kettemann A. (2006). A mathematical model for stroma controlled chemotaxis of hematopoietic stem cells. Oberwolfach Rep. 24: 59–62

    Google Scholar 

  13. Post, K.: A system of non-linear partial differential equations modeling chemotaxis with sensitivity functions. Humboldt Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, electronic (1999)

  14. Wagner W., Saffrich R., Wrikner U., Eckstein V., Blake J., Ansorge A., Schwager C., Wein F., Miesala K., Ansorge W. and Ho A.D. (2005). Hematopoietic progenitor cells and cellular microenvironment: behavioral and molecular changes upon interaction. Stem Cells 23: 1180–1191

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Neuss-Radu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kettemann, A., Neuss-Radu, M. Derivation and analysis of a system modeling the chemotactic movement of hematopoietic stem cells. J. Math. Biol. 56, 579–610 (2008). https://doi.org/10.1007/s00285-007-0132-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-007-0132-4

Keywords

Mathematics Subject Classification (2000)

Navigation