Skip to main content
Log in

Globally attracting fixed points in higher order discrete population models

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We address the global stability properties of the positive equilibrium in a general delayed discrete population model. Our results are used to investigate in detail a well-known model for baleen whale populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balibrea F., Linero A.(2003): On the periodic structure of delayed difference equations of the form x n  = f(x n-k ) on I and S 1. J. Differ. Equ. Appl. 9, 359–371

    Article  MATH  MathSciNet  Google Scholar 

  2. Block L.S., Coppel W.A.(1992): Dynamics in one dimension. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  3. Botsford L.W.(1992): Further analysis of Clark’s delayed recruitment model. Bull. Math. Biol. 54, 275–293

    Google Scholar 

  4. Braverman, E., Kinzebulatov, D.: On linear perturbations of the Ricker model. Math. Biosci. DOI: 10.1016/j.mbs.2006.04.008 (2006)

  5. Clark C.W.(1976): A delayed recruitment model of population dynamics with an application to baleen whale populations. J. Math. Biol. 3, 381–391

    MATH  MathSciNet  Google Scholar 

  6. Cull P.(1988): Stability of discrete one-dimensional population models. Bull. Math. Biol. 50, 67–75

    MATH  MathSciNet  Google Scholar 

  7. Cull P.(2003): Stability in one-dimensional models. Sci. Math. Jpn. 8, 349–357

    MathSciNet  Google Scholar 

  8. El-Morshedy H.A.(2003): The global attractivity of difference equations of nonincreasing nonlinearities with applications. Comput. Math. Appl. 45, 749–758

    Article  MATH  MathSciNet  Google Scholar 

  9. El-Morshedy H.A., Liz E.(2005): Convergence to equilibria in discrete population models. J. Differ. Equ. Appl. 11, 117–131

    Article  MATH  MathSciNet  Google Scholar 

  10. Fisher M.E.(1984): Stability of a class of delay–difference equations. Nonlinear Anal. 8, 645–654

    Article  MATH  MathSciNet  Google Scholar 

  11. Fisher M.E., Goh B.S.(1984): Stability results for delayed-recruitment models in population dynamics. J. Math. Biol. 19, 147–156

    Article  MATH  MathSciNet  Google Scholar 

  12. Fisher M.E., Goh B.S., Vincent T.L.(1979): Some stability conditions for discrete-time single species models. Bull. Math. Biol. 41, 861–875

    MATH  MathSciNet  Google Scholar 

  13. Gurney W.S.C., Blythe S.P., Nisbet R.M.(1980): Nicholson’s blowflies revisited. Nature 287, 17–21

    Article  Google Scholar 

  14. Győri I., Trofimchuk S.(2000): Global attractivity and persistence in a discrete population model. J. Differ. Equ. Appl. 6, 647–665

    Google Scholar 

  15. an der Heiden U., Liang M.-L.(2004): Sharkovsky orderings of higher order difference equations. Discrete Contin. Dyn. Syst. 11, 599–614

    Article  MATH  MathSciNet  Google Scholar 

  16. an der Heiden U., Mackey M.C.(1982): The dynamics of production and destruction: analytic insight into complex behavior. J. Math. Biol. 16, 75–101

    MATH  MathSciNet  Google Scholar 

  17. Ivanov A.F.(1994): On global stability in a nonlinear discrete model. Nonlinear Anal. 23, 1383–1389

    Article  MATH  MathSciNet  Google Scholar 

  18. Karakostas G., Philos Ch.G., Sficas Y.G.(1991): The dynamics of some discrete population models. Nonlinear Anal. 17, 1069–1084

    Article  MATH  MathSciNet  Google Scholar 

  19. Kocić V.L., Ladas G.(1993): Global Behavior of Nonlinear Difference Equations of Higher Order with Applications. Mathematics and its Applications, vol. 256. Kluwer, Dordrecht

    Google Scholar 

  20. Kuruklis S.A.(1994): The asymptotic stability of x n+1 − ax n  + bx n-k  = 0. J. Math. Anal. Appl. 188, 719–731

    Article  MATH  MathSciNet  Google Scholar 

  21. Levin S.A., May R.M.(1976): A note on difference delay equations. Theor. Pop. Biol. 9, 178–187

    Article  MathSciNet  Google Scholar 

  22. Liz E., Tkachenko V., Trofimchuk S.(2003): A global stability criterion for scalar functional differential equations. SIAM J. Math. Anal. 35, 596–622

    Article  MATH  MathSciNet  Google Scholar 

  23. Liz E., Tkachenko V., Trofimchuk S.(2006): Global stability in discrete population models with delayed-density dependence. Math. Biosci. 199, 26–37

    Article  MATH  MathSciNet  Google Scholar 

  24. Mackey M.C., Glass L.(1977): Oscillation and chaos in physiological control systems. Science 197, 287–289

    Article  Google Scholar 

  25. May R.M.(1974): Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos. Science 186, 645–647

    Article  Google Scholar 

  26. May R.M. (1976): Simple mathematical models with very complicated dynamics. Nature 261, 459–467

    Article  Google Scholar 

  27. Maynard Smith J.(1974): Models in Ecology. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  28. Mertz G., Myers R.A.(1983): An augmented Clark model for stability of populations. Math. Biosci. 64, 227–231

    Article  MathSciNet  Google Scholar 

  29. Milton J.G., Bélair J.(1990): Chaos, noise, and extincion in models of population growth. Theor. Popul. Biol. 37, 273–290

    Article  MATH  Google Scholar 

  30. Murray J.D.(1993): Mathematical Biology. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  31. Pielou E.C. (1974): Population and Community Ecology. Gordon and Breach, New York

    Google Scholar 

  32. Rosenkranz G.(1983): On global stability of discrete population models. Math. Biosci. 64, 227–231

    Article  MATH  MathSciNet  Google Scholar 

  33. Sedaghat H.(1997): The impossibility of unstable, globally attracting fixed points for continuous mapping of the line. Am. Math. Monthly 104, 356–358

    Article  MATH  MathSciNet  Google Scholar 

  34. Sharkovsky A.N., Kolyada S.F., Sivak A.G., Fedorenko V.V.(1997): Dynamics of One-dimensional Maps. Mathematics and Its Applications, vol. 407. Kluwer, Dordrecht

    MATH  Google Scholar 

  35. Singer D.(1978): Stable orbits and bifurcation of maps of the interval. SIAM J. Appl. Math. 35, 260–267

    Article  MATH  MathSciNet  Google Scholar 

  36. Thieme H.R.(2003): Mathematics in Population Biology. Princeton University Press, New Jersey

    MATH  Google Scholar 

  37. Tkachenko V., Trofimchuk S.(2005): Global stability in difference equations satisfying the generalized Yorke condition. J. Math. Anal. Appl. 303, 173–187

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Liz.

Additional information

E. Liz was supported in part by M.E.C. (Spain) and FEDER, under project MTM2004-06652-C03-02.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Morshedy, H.A., Liz, E. Globally attracting fixed points in higher order discrete population models. J. Math. Biol. 53, 365–384 (2006). https://doi.org/10.1007/s00285-006-0014-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-006-0014-1

Keywords

Mathematics Subject Classification (2000)

Navigation