Skip to main content
Log in

Analysis of the periodically fragmented environment model : I – Species persistence

Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract.

This paper is concerned with the study of the stationary solutions of the equation

where the diffusion matrix A and the reaction term f are periodic in x. We prove existence and uniqueness results for the stationary equation and we then analyze the behaviour of the solutions of the evolution equation for large times. These results are expressed by a condition on the sign of the first eigenvalue of the associated linearized problem with periodicity condition. We explain the biological motivation and we also interpret the results in terms of species persistence in periodic environment. The effects of various aspects of heterogeneities, such as environmental fragmentation are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Agmon, S.: Differential equations (Birmingham, Ala., 1983). North-Holland Math. Stud. 92, 7–17 (1984)

  2. Ammerman, A.J., Cavalli-Sforza, L.L.: The Neolithic Transition and the Genetics of Populations in Europe. Princeton Univ. Press, Princeton, NJ, 1984

  3. Aronson, D.G., Weinberger, H.F.: Multidimensional nonlinear diffusions arising in population genetics. Adv. Math. 30, 33–76 (1978)

    Article  Google Scholar 

  4. Berestycki, H.: Le nombre de solutions de certains problèmes semi-linéaires elliptiques. J. Func. Anal. 40, 1–29 (1981)

    Google Scholar 

  5. Berestycki, H., Hamel, F.: Front propagation in periodic excitable media. Commun. Pure Appl. Math. 55, 949–1032 (2002)

    Google Scholar 

  6. Berestycki, H., Hamel, F., Nadirashvili, N.: The speed of propagation for KPP type problems. I - Periodic framework. J. Europ. Math. Soc. 2005. J. Eur. Math. Soc. 7, 173–213 (2005)

  7. Berestycki, H., Hamel, F., Roques, L.: Analysis of the periodically fragmented environment model : II - Biological invasions and pulsating travelling fronts. J. Math. Pures Appl. 2005. To appear

  8. Berestycki, H., Hamel, F., Rossi, L.: Liouville theorems for semilinear elliptic equations in unbounded domains. Preprint

  9. Berestycki, H., Lachand-Robert, T.: Some properties of monotone rearrangement with applications to elliptic equations in cylinders. Math. Nachr. 266, 3–19 (2004)

    Google Scholar 

  10. Berestycki, H., Nirenberg, L.: Travelling fronts in cylinders. Ann. Inst. H. Poincaré, Anal. Non Linéaire 9, 497–572 (1992)

    Google Scholar 

  11. Berestycki, H., Nirenberg, L., Varadhan, S.R.S.: The principal eigenvalue and maximum principle for second order elliptic operators in general domains. Commun. Pure Appl. Math. 47, 47–92 (1994)

    Google Scholar 

  12. Brown, K., Lin, S.S.: On the existence of positive eigenfunctions for an eigenvalue problem with indefinite weight function. J. Math. Anal. Appl. 75, 112–120 (1980)

    Google Scholar 

  13. Cantrell, R.S., Cosner, C.: Diffusive logistic equations with indefinite weights: population models in disrupted environments. Proc. Roy. Soc. Edinburgh 112, 293–318 (1989)

    Google Scholar 

  14. Cantrell, R.S., Cosner, C.: Diffusive logistic equations with indefinite weights: population models in disrupted environments II. SIAM J. Math. Anal. 22 (4), 1043–1064 (1991)

    Google Scholar 

  15. Cantrell, R.S., Cosner, C.: The effects of spatial heterogeneity in population dynamics. J. Math. Biol. 29, 315–338 (1991)

    Google Scholar 

  16. Cantrell, R.S., Cosner, C.: On the effects of spatial heterogeneity on the persistence of interacting species. J. Math. Biol. 37, 103–145 (1998)

    Google Scholar 

  17. Capdeboscq, Y.: Homogenization of a neutronic critical diffusion problem with drift. Proc. Royal Soc. Edinburgh 132 A, 567–594 (2002)

    Google Scholar 

  18. Cano-Casanova, S., López-Gómez, J.: Permanence under strong aggressions is possible. Ann. Inst. H. Poincaré, Anal. Non Linéaire 20, 999–1041 (2003)

    Google Scholar 

  19. Cavalli-Sforza, L.L., Feldman, M.W.: Cultural Transmission and Evolution : A Quantitative Approach. Princeton Univ. Press, Princeton, NJ, 1981

  20. Engländer, J., Kyprianou, A.E.: Local extinction versus local exponential growth for spatial branching processes. Ann. Probab. 32, 78–99 (2004)

    MathSciNet  Google Scholar 

  21. Engländer, J., Pinsky, R.G.: On the construction and support properties of measure-valued diffusions on with spatially dependent branching. Ann. Probab. 27, 684–730 (1999)

    Google Scholar 

  22. Engländer, J., Pinsky, R.G.: Uniqueness/nonuniqueness for nonnegative solutions of second-order parabolic equations of the form u t =Lu+Vu–γ up in Rn. J. Diff. Equations 192, 396–428 (2003)

    Google Scholar 

  23. Fife, P.C., McLeod, J.B.: The approach of solutions of non-linear diffusion equations to traveling front solutions. Arch. Ration. Mech. Anal. 65, 335–361 (1977)

    Google Scholar 

  24. Fisher, R.A.: The advance of advantageous genes. Ann. Eugenics 7, 335–369 (1937)

    Google Scholar 

  25. Freidlin, M.: On wavefront propagation in periodic media. Stochastic analysis and applications, Adv. Probab. (Related Topics, 7, Dekker, New York, 1984) 147–166

  26. Freidlin, M.: Semi-linear PDEs and limit theorem for large deviations. Springer Lecture Notes in Mathematics, 1527, 1992

  27. Freidlin, M.: Markov Processes and Differential Equations: Asymptotic Problems. Lectures in Mathematics ETH Zurich, Birkhauser Verlag, Basel, 1996

  28. Gärtner, J., Freidlin, M.: On the propagation of concentration waves in periodic and random media. Sov. Math. Dokl. 20, 1282–1286 (1979)

    Google Scholar 

  29. Hardy, G.H., Littlewood, J.E., P’olya, G.: Inequalities. Cambridge University Press, Cambridge, 1952

  30. Harrell, E.M., Kröger, P., Kurata, K.: On the placement of an obstacle or a well so as to optimize the fundamental eigenvalue. SIAM J. Math. Anal. 33 (1), 240–259 (2001)

    Google Scholar 

  31. Hess, P.: Periodic-parabolic boundary value problems and positivity. Pitman Research Notes in Mathematics Series, 247. Longman Scientific & Technical, Harlow, UK, 1991

  32. Hiebeler, D.E.: Populations on Fragmented Landscapes with Spatially Structured Heterogeneities: Landscape Generation and Local Dispersal. Ecology 81 (6), 1629–1641 (2000)

    Google Scholar 

  33. Hudson, W., Zinner, B.: Existence of travelling waves for reaction-diffusion equations of Fisher type in periodic media. In: Boundary Value Problems for Functional-Differential Equations. J. Henderson (ed.), World Scientific, 1995, pp. 187–199

  34. Hughes, J.: Modeling the effect of landscape pattern on mountain pine beetles. Thesis, Simon Fraser University, 2002

  35. Hutson, V., Mischaikow, K., Polacik, P.: The Evolution of dispersal rates in a heterogeneous time-periodic environment. J. Math. Biol. 43, 501–533 (2001)

    CAS  PubMed  Google Scholar 

  36. Kaipio, J.P., Tervo, J., Vauhkonen, M.: Simulations of the heterogeneity of environments by finite element methods. Math. Comput. Simul. 39, 155–172 (1995)

    Google Scholar 

  37. Kawohl, B.: On the isoperimetric nature of a rearrangement inequality and its consequences for some variational problems. Arch. Ration. Mech. Anal. 94, 227–243 (1986)

    Google Scholar 

  38. Kinezaki, N., Kawasaki, K., Takasu, F., Shigesada, N.: Modeling biological invasion into periodically fragmented environments. Theor. Population Biol. 64, 291–302 (2003)

    Google Scholar 

  39. Kolmogorov, A.N., Petrovsky, I.G., Piskunov, N.S.: Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Bulletin Université d’État à Moscou (Bjul. Moskowskogo Gos. Univ.), Série internationale A 1, 1–26 (1937)

    Google Scholar 

  40. Ludwig, D., Aronson, D.G., Weinberger, H.F.: Spatial patterning of the spruce budworm. J. Math. Biol. 8, 217–258 (1979)

    Google Scholar 

  41. Murray, J.D., Sperb, R.P.: Minimum domains for spatial patterns in a class of reaction-diffusion equations. J. Math. Biol. 18, 169–184 (1983)

    CAS  PubMed  Google Scholar 

  42. Pinsky, R.G.: Positive harmonic functions and diffusion. Cambridge University Press, 1995

  43. Pinsky, R.G.: Second order elliptic operators with periodic coefficients: criticality theory, perturbations, and positive harmonic functions. J. Funct. Anal. 129, 80–107 (1995)

    Google Scholar 

  44. Pinsky, R.G.: Transience, recurrence and local extinction properties of the support for supercritical finite measure-valued diffusions. Ann. Probab. 24, 237–267 (1996)

    Google Scholar 

  45. Senn, S.: On a nonlinear elliptic eigenvalue problem with Neumann boundary conditions, with an application to population genetics. Commun. Part. Diff. Equations 8, 1199–1228 (1983)

    Google Scholar 

  46. Senn, S., Hess, P.: On positive solutions of a linear elliptic eigenvalue problem with Neumann boundary conditions. Math. Ann. 258, 459–470 (1981/82)

    Google Scholar 

  47. Shigesada, N., Kawasaki, K.: Biological invasions: theory and practice. Oxford Series in Ecology and Evolution, Oxford : Oxford University Press, 1997

  48. Shigesada, N., Kawasaki, K., Teramoto, E.: Traveling periodic waves in heterogeneous environments. Theor. Population Biol. 30, 143–160 (1986)

    Google Scholar 

  49. Skellam, J.G.: Random dispersal in theoretical populations. Biometrika 38, 196–218 (1951)

    CAS  PubMed  Google Scholar 

  50. Weinberger, H.: On spreading speed and travelling waves for growth and migration models in a periodic habitat. J. Math. Biol. 45, 511–548 (2002)

    PubMed  Google Scholar 

  51. Xin, X.: Existence of planar flame fronts in convective-diffusive periodic media. Arch. Ration. Mech. Anal. 121, 205–233 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berestycki, H., Hamel, F. & Roques, L. Analysis of the periodically fragmented environment model : I – Species persistence. J. Math. Biol. 51, 75–113 (2005). https://doi.org/10.1007/s00285-004-0313-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-004-0313-3

Keywords

Navigation