Skip to main content

Advertisement

Log in

Competitive exclusion and coexistence for pathogens in an epidemic model with variable population size

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

We study an SIR epidemic model with a variable host population size. We prove that if the model parameters satisfy certain inequalities then competition between n pathogens for a single host leads to exclusion of all pathogens except the one with the largest basic reproduction number. It is shown that a knowledge of the basic reproduction numbers is necessary but not sufficient for determining competitive exclusion. Numerical results illustrate that these inequalities are sufficient but not necessary for competitive exclusion to occur. In addition, an example is given which shows that if such inequalities are not satisfied then coexistence may occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Ackleh, A.S., Marshall, D.F., Fitzpatrick, B.G., Heatherly, H.E.: Survival of the fittest in a generalized logistic model. Math. Models Methods Appl. Sci. 9, 1379–1391 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ackleh, A.S., Marshall, D.F., Heatherly, H.E.: Extinction in a generalized Lotka-Volterra predator–prey model. J. Appl. Math. Stochastic Anal. 13, 287–297 (2000)

    Google Scholar 

  3. Ahmad, S.: Extinction of species in nonautonomous Lotka-Volterra systems. Proc. Amer. Math. Soc. 127, 2905–2910 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Allen, L.J.S., Cormier, P.J.: Environmentally driven epizootics. Math. Biosci. 131, 51–80 (1996)

    Article  MATH  Google Scholar 

  5. Anderson, R.M., May, R.M.: Population biology of infectious diseases. Part I. Nature 280, 361–367 (1979)

    Google Scholar 

  6. Anderson, R.M., May, R.M.: Coevolution of hosts and parasites. Parasitology 85, 411–426 (1982)

    Google Scholar 

  7. Andreasen, V., Pugliese, A.: Pathogen coexistence induced by density dependent host mortality. J. Theor. Biol. 177, 159–165 (1995)

    Google Scholar 

  8. Beverton, R.J.H., Holt, S.J.: On the dynamics of exploited fish population. Fishery Investigations Ser. 2, 19, London: H.M.S.O 1957

    Google Scholar 

  9. Brauer, F.: Models for the spread of universally fatal diseases. J. Math. Biol. 28, 451–462 (1990)

    MathSciNet  MATH  Google Scholar 

  10. Bremermann, H.J., Pickering, J.: A game-theoretical model of parasite virulence. J. Theor. Biol. 100, 411–426 (1983)

    MathSciNet  Google Scholar 

  11. Bremermann, H.J., Thieme, H.R.: A competitive exclusion principle for pathogen virulence. J. Math. Biol. 27, 179–190 (1989)

    MathSciNet  MATH  Google Scholar 

  12. Butler, G., Freedman, H.I., Waltman, P.: Uniformly persistence systems. Proc. Am. Math. Soc. 96, 425–430 (1986)

    MathSciNet  MATH  Google Scholar 

  13. Butler, G., Waltman, P.: Persistence in dynamical systems. J. Differential Eqns. 63, 255–263 (1986)

    MATH  Google Scholar 

  14. Castillo-Chavez, C., Huang, W., Li, J.: Competitive exclusion in gonorrhea models and other sexually transmitted diseases. SIAM J. Appl. Math. 56, 494–508 (1996)

    MathSciNet  MATH  Google Scholar 

  15. Castillo-Chavez, C., Huang, W., Li, J.: Competitive exclusion and coexistence of multiple strains in an SIS STD model. SIAM J. Appl. Math. 59, 1790–1811 (1999)

    MathSciNet  MATH  Google Scholar 

  16. Castillo-Chavez, C., Velasco-Hernández, J.X.: On the relationship between evolution of virulence and host demography. J. Theor. Biol. 192, 437–444 (1998)

    Article  Google Scholar 

  17. Feng, Z., Velasco-Hernández, J.X.: Competitve exclusion in a vector–host model for the dengue fever. J. Math. Biol. 35, 523–544 (1997)

    Google Scholar 

  18. Hochberg, M.E., Holt, R.D.: The coexistence of competing parasites I. The role of cross-species infection. Amer. Nat. 136, 517–541 (1990)

    Article  Google Scholar 

  19. Levin, S.A.: Community equilibria and stability, and an extension of the competitive exclusion principle. Amer. Nat. 104, 413–423 (1970)

    Article  Google Scholar 

  20. Levin, S.A., Pimentel, D.: Selection of intermediate rates increase in parasite–host systems. Amer. Nat. 117, 308–315 (1981)

    Article  MathSciNet  Google Scholar 

  21. May, R.M.: Stability and Complexity in Model Ecosystems, Princeton University Press, Princeton, NJ, 1973

  22. May, R.M., Nowak, M.A.: Superinfection, metapopulation dynamics, and the evolution of virulence. J. Theor. Biol. 170, 95–114 (1994)

    Article  Google Scholar 

  23. May, R.M., Nowak, M.A.: Coinfection and the evolution of parasite virulence. Proc. R. Soc. London B 261, 209–215 (1995)

    Google Scholar 

  24. Mosquera, J., Adler, F.R.: Evolution of virulence: a unifed framework for coinfection and superinfection. J. Theor. Biol. 195, 293–313 (1998)

    Article  Google Scholar 

  25. Maynard Smith, J.: The Evolution of Sex. Cambridge University Press, Cambridge, UK, 1978

  26. Montes de Oca, F., Zeeman, M.L.: Extinction in nonautonomous competitive Lotka-Volterra systems. Proc. Amer. Math. Soc. 124, 3677–3687 (1996)

    Article  MATH  Google Scholar 

  27. Nowak, M.A., May, R.M.: Superinfection and the evolution of parasite virulence. Proc. R. Soc. London B 255, 81–89 (1994)

    Google Scholar 

  28. Pugliese, A.: Population models for diseases with no recovery. J. Math. Biol. 28, 65–82 (1990)

    MathSciNet  MATH  Google Scholar 

  29. Ricker, W.E.: Stock and recruitment. J. Fish Res. Bd. Canada 11, 559–623 (1954)

    Google Scholar 

  30. Smith, H.L., Waltman, P.: The Theory of the Chemostat. Cambridge University Press, Cambridge, UK., 1995

  31. Smith, H.L., Zhao, X.-Q.: Competitive exclusion in a discrete-time, size-structured chemostat model. Discrete Contin. Dyn. Syst. Ser. B 1, 183–191 (2001)

    MathSciNet  Google Scholar 

  32. van Baalen, M., Sabelis, M.W.: The dynamics of multiple infection and the evolution of virulence. Amer. Nat. 146, 881–910 (1995)

    Article  Google Scholar 

  33. Zeeman, M.L.: Extinction in competitive Lotka-Volterra systems. Proc. Amer. Math. Soc. 123, 87–96 (1995)

    MathSciNet  MATH  Google Scholar 

  34. Zhou, J., Hethcote, H.W.: Population size dependent incidence in models for diseases without immunity. J. Math. Biol. 32, 809–834 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azmy S. Ackleh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ackleh, A., Allen, L. Competitive exclusion and coexistence for pathogens in an epidemic model with variable population size. J. Math. Biol. 47, 153–168 (2003). https://doi.org/10.1007/s00285-003-0207-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-003-0207-9

Keywords

Navigation