Skip to main content
Log in

Current Status and Future Perspectives on Distribution of Fungal Endophytes and Their Utilization for Plant Growth Promotion and Management of Grapevine Diseases

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Grapevine is one of the economically most important fruit crops cultivated worldwide. Grape production is significantly affected by biotic constraints leading to heavy crop losses. Changing climatic conditions leading to widespread occurrence of different foliar diseases in grapevine. Chemical products are used for managing these diseases through preventive and curative application in the vineyard. High disease pressure and indiscriminate use of chemicals leading to residue in the final harvest and resistance development in phytopathogens. To mitigate these challenges, the adoption of potential biocontrol control agents is necessary. Moreover, multifaceted benefits of endophytes made them eco-friendly, and environmentally safe approach. The genetic composition, physiological conditions, and ecology of their host plant have an impact on their dispersion patterns and population diversity. Worldwide, a total of more than 164 fungal endophytes (FEs) have been characterized originating from different tissues, varieties, crop growth stages, and geographical regions of grapevine. These diverse FEs have been used extensively for management of different phytopathogens globally. The FEs produce secondary metabolites, lytic enzymes, and organic compounds which are known to possess antimicrobial and antifungal properties. The aim of this review was to understand diversity, distribution, host–pathogen-endophyte interaction, role of endophytes in disease management and for enhanced, and quality production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Myles S, Boyko AR, Owens CL, Brown PJ, Grassi F, Aradhya MK, Prins B, Reynolds A, Chia JM, Ware D, Bustamante CD (2011) Genetic structure and domestication history of the grape. Proc Natl Acad Sci 108:3530–3535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fortes AM, Pais MS (2015) Grape (Vitis species). Faculdade de Ciencias de Lisboa, Biosystems and Integrative Sciences Institute (BIOISI), Universidade de Lisboa, Campo Grande

  3. Khan N, Fahad S, Naushad M, Faisal S (2020) Grape production critical review in the world. https://doi.org/10.2139/ssrn.3595842

  4. APEDA (2023) 3rd Advance estimates of Agricultural and Processed Food Products Export Development Authority. https://apeda.gov.in/apedawebsite/SubHead_Products/Grapes.htm

  5. NHB (2018) Horticulture statistics at a glance, Horticulture Statistics Division, National Horticulture Board, Department of Agriculture, Cooperation and Farmers’ Welfare, Ministry of Agriculture and Farmers’ Welfare, Government of India. http://nhb.gov.in/statistics/Publication/Horticulture%20At%20a %20Glance%202017%20for%20net%20uplod%20(2).pdf.

  6. Jogaiah S, Oulkar DP, Vijapure AN, Maske SR, Sharma AK, Somkuwar RG (2017) Influence of canopy management practices on fruit composition of wine grape cultivars grown in semi-arid tropical region of India. Int J Enolgy Vitic 4:158–168

    Google Scholar 

  7. Volpi I, Guidotti D, Mammini M, Marchi S (2021) Predicting symptoms of downy mildew, powdery mildew, and gray mold diseases of grapevine through machine learning. Italian J Agromet 2:57–69

    Article  Google Scholar 

  8. Fedorina J, Tikhonova N, Ukhatova Y, Ivanov R, Khlestkina E (2022) Grapevine gene systems for resistance to gray mold Botrytis cinerea and powdery mildew Erysiphe necator. Agronomy 12:499

    Article  CAS  Google Scholar 

  9. Fan Y, Guo F, Wu R, Chen Z, Li Z (2023) First report of Colletotrichum gloeosporioides causing anthracnose on grapevine (Vitis vinifera) in Shaanxi province. China Plant Dis 107:2249

    Article  Google Scholar 

  10. Jia M, Chen L, Xin HL, Zheng CJ, Rahman K, Han T, Qin LP (2016) A friendly relationship between endophytic fungi and medicinal plants: a systematic review. Front Microbiol 7:906. https://doi.org/10.3389/fmicb.2016.00906

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wu YY, Zhang TY, Zhang MY, Cheng J, Zhang YX (2018) An endophytic fungi of Ginkgo biloba L. produces antimicrobial metabolites as potential inhibitors of FtsZ of Staphylococcus aureus. Fitoterapia 128:265–271. https://doi.org/10.1016/j.fitote.2018.05.033

    Article  CAS  PubMed  Google Scholar 

  12. Xie J, Wu YY, Zhang TY, Zhang MY, Peng F, Lin B, Zhang YX (2018) New antimicrobial compounds produced by endophytic Penicillium janthinellum isolated from Panax notoginseng as potential inhibitors of FtsZ. Fitoterapia 131:35–43. https://doi.org/10.1016/j.fitote.2018.10.006

    Article  CAS  PubMed  Google Scholar 

  13. Tripathi S, Kamal S, Sheramati I, Oelmuller R, Varma A (2008) Mycorrhizal fungi and other root endophytes as biocontrol agents against root pathogens. Mycorrhiza. Springer, Heidelberg, pp 281–306. https://doi.org/10.1007/978-3-540-78826-314

    Book  Google Scholar 

  14. Gao FK, Dai CC, Liu XZ (2010) Mechanisms of fungal endophytes in plant protection against pathogens. Afr J Microbiol Res 4:1346–1351

    Google Scholar 

  15. Burruano S, Alfonzo A, Lo Piccolo S, Conigliaro G, Mondello V, Torta L (2008) Interaction between Acremonium byssoides and Plasmopara viticola in Vitis vinifera. Phytopathol Mediterr 47:122–131. https://doi.org/10.14601/Phytopathol_Mediterr-2615

    Article  Google Scholar 

  16. Musetti R, Vecchione A, Stringher L, Borselli S, Zulini L, Marzani C (2006) Inhibition of sporulation and ultrastructural alterations of grapevine downy mildew by the endophytic fungus Alternaria alternata. Phytopath 96:689–698. https://doi.org/10.1094/PHYTO-96-0689

    Article  CAS  Google Scholar 

  17. Musetti R, Polizzotto R, Vecchione A, Borselli S, Zulini L, D’Ambrosio M (2007) Antifungal activity of diketopiperazines extracted from Alternaria alternata against Plasmopara viticola: an ultrastructural study. Micron 38:643–650. https://doi.org/10.1016/j.micron.2006.09.001

    Article  CAS  PubMed  Google Scholar 

  18. Polizzotto R, D’Agostin S, Grisan S, Assante G, Pertot I, Andersen B, Musetti R (2009) Activity of endophytic Alternaria spp. strains in the control of Plasmopara viticola. Plant Pathol J 91:79–80

    Google Scholar 

  19. Kortekamp A (1997) Epicoccum nigrum LINK: a biological control agent of Plasmopara viticola (BERK. et CURT.). Vitis 36:215–216

    Google Scholar 

  20. Bakshi S, Sztejnberg A, Yarden O (2001) Isolation and characterization of a cold-tolerant strain of Fusarium proliferatum, a biocontrol agent of grape downy mildew. Phytopathology 91:1062–1068. https://doi.org/10.1094/PHYTO.2001.91.11.1062

    Article  CAS  PubMed  Google Scholar 

  21. Banani H, Roatti B, Ezzahi B, Giovannini O, Gessler G, Pertot I, Perazzolli M (2014) Characterization of resistance mechanisms activated by Trichoderma harzianum T39 and benzothiadiazole to downy mildew in different grapevine cultivars. Plant Pathol 63:334–343. https://doi.org/10.1111/ppa.12089

    Article  CAS  Google Scholar 

  22. Woo SL, Ruocco M, Vinale F, Nigro M, Lorito M (2014) Trichoderma-based products and their widespread use in agriculture. Open Mycol J 8:71–126. https://doi.org/10.2174/1874437001408010071

    Article  Google Scholar 

  23. Khan IH, Javaid A, Ahmed D (2021) Trichoderma viride controls Macrophomina phaseolina through its DNA disintegration and production of antifungal compounds. Int J Agric Biol 25:888–894. https://doi.org/10.17957/IJAB/15.1743

    Article  CAS  Google Scholar 

  24. Zahavi T, Cohen L, Weiss B, Schena L, Daus A, Kaplunov T, Zutkhi J, Ben-Arie R, Droby S (2000) Biological control of Botrytis, Aspergillus and Rhizopus rots on table and wine grapes in Israel. Postharvest Biol Technol 20:115–124. https://doi.org/10.1016/S0925-5214(00)00118-6

    Article  Google Scholar 

  25. Ciccarese F, Longo O, Ambrico A, Schiavone D, Ziadi T (2008) Use of Aphanocladium album (isolate Mx-95) in the control of pre-and postharvest grape rot diseases. Atti Gior Fitopatol Marzo 2006:443–448. https://doi.org/10.3390/su14052693

    Article  Google Scholar 

  26. Elmer PAG, Reglinski T (2006) Biosuppression of Botrytis cinerea in grapes. Plant Pathol 55:155–177. https://doi.org/10.1111/j.1365-3059.2006.01348.x

    Article  Google Scholar 

  27. Mantzoukas S, Lagogiannis I, Mpousia D, Ntoukas A, Karmakolia K, Eliopoulos PA, Poulas K (2021) Beauveria bassiana endophytic strain as plant growth promoter: the case of the grape vine Vitis vinifera. J Fungi 7:142. https://doi.org/10.3390/jof7020142

    Article  CAS  Google Scholar 

  28. Holkar SK, Ghotgalkar PS, Lodha TD, Bhanbhane VC, Shewale SA, Markad H, Shabeer AT, Saha S (2023) Biocontrol potential of endophytic fungi originated from grapevine leaves for management of anthracnose disease caused by Colletotrichum gloeosporioides. 3 Biotech 13:1–20. https://doi.org/10.1007/s13205-023-03675-z

    Article  Google Scholar 

  29. Holkar SK, Ghotgalkar PS, Shewale S, Bhanbhane VC, Saha S (2022) Identification and in-vitro efficacy of fungal endophytes isolated from grapevine cv. Manik Chaman for management of anthracnose and bacterial leaf spot diseases in grapes. In Proceedings of 8th International Conference (Hybrid Mode) on Plant Pathology: Retrospect and Prospects which was held at SKNAU, Jobner, Rajasthan from March 23–26, 2022, OP-10(3C):133.

  30. Holkar SK, Patel DC, Ghuge G, Bagate SA, Gawande DN, Saha S (2023b) Characterization of bacterial endophytes isolated from different grapevine genotypes and their bio-efficacy against Colletotrichum gloeosporioides causing anthracnose disease. In proceedings of International Conference held at Pondicherry University, Pondicherry from February 13–15, OP-15.

  31. Ghotgalkar PS, Bhanbhane VC, Holkar SK, Saha S, Shewale S (2021) Isolation, identification and in-vitro efficacy of fungal endophytes originating from grapevines for management of anthracnose disease (Colletotricum gleosporioides) in grapes. In proceedings of National Symposium held at College of Agriculture Latur, from 17–18 November, 2021, OP-56: pp. 193.

  32. Ghotgalkar PS, Bhanbhane VC, Shewale S, Holkar SK, Saha S (2022) Molecular identification of fungal endophytes isolated from grapevine leaves for management of anthracnose disease in grapes. In proceedings of 8th International Conference (Hybrid Mode) on Plant Pathology: Retrospect and Prospects which was held at SKNAU, Jobner, Rajasthan from March 23–26, PP-149(3C):349.

  33. Keller M (2020) The science of grapevines. Academic press, Cambridge

    Google Scholar 

  34. Armijo G, Espinoza C, Loyola R, Restovic F, Santibáñez C, Schlechter R, Agurto M, Arce-Johnson P (2016) Grapevine biotechnology: molecular approaches underlying abiotic and biotic stress responses. Grape Wine Biotechnol. https://doi.org/10.5772/64872

    Article  Google Scholar 

  35. Bettenfeld P, Canals JC, Jacquens L, Fernandez O, Fontaine F, van Schaik E, Trouvelot CPE (2022) The microbiota of the grapevine holobiont: a key component of plant health. J Adv Res 40:1–15

    Article  PubMed  Google Scholar 

  36. Williamson B, Tudzynski B, Tudzynski P, Van Kan JA (2007) Botrytis cinerea: the cause of grey mould disease. Mol Plant Pathol 8:561–580. https://doi.org/10.1111/j.1364-3703.2007.00417.x

    Article  CAS  PubMed  Google Scholar 

  37. Vezzulli S, Gramaje D, Tello J, Gambino G, Bettinelli P, Pirrello C, Schwandner A, Barba P, Angelini E, Anfora G, Mazzoni V (2022) Genomic designing for biotic stress resistant grapevine. Genomic designing for biotic stress resistant fruit crops. Springer International Publishing, Cham, pp 87–255

    Chapter  Google Scholar 

  38. Maxmen A (2013) Crop pests: under attack. Nature 501:15-S17. https://doi.org/10.1038/501S15a

    Article  CAS  Google Scholar 

  39. Massi F, Torriani SF, Borghi L, Toffolatti SL (2021) Fungicide resistance evolution and detection in plant pathogens: Plasmopara viticola as a case study. Microorganisms 9(1):119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Aktar W, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2:1–12. https://doi.org/10.2478/v10102-009-0001-7

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chandrashekara KN, Manivannan S, Chandrashekara C, Chakravarthi M (2012) Biological control of plant diseases. Eco-friendly innovative approaches in plant disease management. International Book Distributors, New Delhi, pp 147–166

    Google Scholar 

  42. Ek-Ramos MJ, Zhou W, Valencia CU, Antwi JB, Kalns LL, Morgan GD (2013) Spatial and temporal variation in fungal endophyte communities isolated from cultivated cotton (Gossypium hirsutum). PLoS One 8:66049. https://doi.org/10.1371/journal.pone.0066049

    Article  CAS  Google Scholar 

  43. Oono R, Lefevre E, Simha A, Lutzoni F (2015) A comparison of the community diversity of foliar fungal endophytes between seedling and adult loblolly pines (Pinus taeda). Fungal Biol 119:917–928. https://doi.org/10.1016/j.funbio.2015.07.003

    Article  PubMed  PubMed Central  Google Scholar 

  44. Potshangbam M, Devi SI, Sahoo D, Strobel GA (2017) Functional characterization of endophytic fungal community associated with Oryza sativa L. and Zea mays L. Front Microb 8:325. https://doi.org/10.3389/fmicb.2017.00325

    Article  Google Scholar 

  45. Liu Y, Bai F, Li T, Yan H (2018) An endophytic strain of genus Paenibacillus isolated from the fruits of Noni (Morinda citrifolia L.) has antagonistic activity against a Noni’s pathogenic strain of genus Aspergillus. Microb Path 125:158–163. https://doi.org/10.1016/j.micpath.2018.09.018

    Article  CAS  Google Scholar 

  46. Kusari S, Hertweck C, Spiteller M (2012) Chemical ecology of endophytic fungi: origins of secondary metabolites. Chem Biol 19:792–798. https://doi.org/10.1016/j.chembiol.2012.06.004

    Article  CAS  PubMed  Google Scholar 

  47. Lo Presti L, Lanver D, Schweizer G, Tanaka S, Liang L, Tollot M (2015) Fungal effectors and plant susceptibility. Annu Rev Plant Biol 66:513–545. https://doi.org/10.1146/annurev-arplant-043014-114623

    Article  CAS  PubMed  Google Scholar 

  48. Schulz B, Haas S, Junker C, Andree N, Schobert M (2015) Fungal endophytes are involved in multiple balanced antagonisms. Curr Sci 109:39–45

    Google Scholar 

  49. Mejia LC, Herre EA, Sparks JP, Winter K, Garcia MN, Van Bael SA (2014) Pervasive effects of a dominant foliar endophytic fungus on host genetic and phenotypic expression in a tropical tree. Front Microbiol 5:479. https://doi.org/10.3389/fmicb.2014.00479

    Article  PubMed  PubMed Central  Google Scholar 

  50. Persoh D (2015) Plant-associated fungal communities in the light of meta omics. Fungal Divers 75:1–25. https://doi.org/10.1007/s13225-015-0334-9

    Article  Google Scholar 

  51. Yan JF, Broughton SJ, Yang SL, Gange AC (2015) Do endophytic fungi grow through their hosts systemically? Fungal Ecol 13:53–59. https://doi.org/10.1016/j.funeco.2014.07.005

    Article  Google Scholar 

  52. Yao YQ, Lan F, Qiao YM, Wei JG, Huang RS, Li LB (2017) Endophytic fungi harboured in the root of Sophora tonkinensis Gapnep: diversity and biocontrol potential against phytopathogens. Microb Open 6:00437. https://doi.org/10.1002/mbo3.437

    Article  CAS  Google Scholar 

  53. Saikkonen K, Ion D, Gyllenberg M (2002) The persistence of vertically transmitted fungi in grass metapopulations. Proc R Soc B Bio Sci 269:1397–1403. https://doi.org/10.1098/rspb.2002.2006

    Article  Google Scholar 

  54. Rodriguez RJ, White JJF, Arnold AE, Redman ARA (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330. https://doi.org/10.1111/j.1469-8137.2009.02773.x

    Article  CAS  PubMed  Google Scholar 

  55. Arnold AE, Lutzoni F (2007) Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549. https://doi.org/10.1890/05-1459

    Article  PubMed  Google Scholar 

  56. Martini M, Musetti R, Grisan S, Polizzotto R, Borselli S, Pavan F (2009) DNA-dependent detection of the grapevine fungal endophytes Aureobasidium pullulans and Epicoccum nigrum. Plant Dis 93:993–998. https://doi.org/10.1094/PDIS-93-10-0993

    Article  CAS  PubMed  Google Scholar 

  57. Russell JR, Huang J, Anand P, Kucera K, Sandoval AG, Dantzler KW (2011) Biodegradation of polyester polyurethane by endophytic fungi. Appl Environ Microbiol 77:6076–6084. https://doi.org/10.1128/AEM.00521-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhao J, Shan T, Mou Y, Zhou L (2011) Plant-derived bioactive compounds produced by endophytic fungi. Mini Rev Med Chem 11:159–168. https://doi.org/10.2174/138955711794519492

    Article  CAS  PubMed  Google Scholar 

  59. Rajulu GMB, Thirunavukkarasu N, Suryanarayanan TS, Ravishankar JP, El Gueddari NE, Moerschbacher BM (2011) Chitinolytic enzymes from endophytic fungi. Fungal Diversity 47:43–53. https://doi.org/10.1007/s13225-010-0071-z

    Article  Google Scholar 

  60. Vyas P, Bansal A (2018) Fungal endophytes: role in sustainable agriculture. Fungi and their role in sustainable development. Curr Perspect. https://doi.org/10.1007/978-981-13-0393-7_7

    Article  Google Scholar 

  61. Compant S, Mitter B, Colli-Mull JG, Gangl H, Sessitsch A (2011) Endophytes of grapevine flowers, berries and seeds: identification of cultivable bacteria, comparison with other plant parts and visualization of niches of colonization. Microb Ecol 62:188–197. https://doi.org/10.1007/s00248-011-9883-y

    Article  PubMed  Google Scholar 

  62. Martins G, Lauga B, Miot-Sertier C, Mercier A, Lonvaud A, Soulas ML (2013) Characterization of epiphytic bacterial communities from grapes, leaves, bark and soil of grapevine plants grown and their relations. PLoS One 8:73013. https://doi.org/10.1371/journal.pone.0073013

    Article  CAS  Google Scholar 

  63. Pettersson M, Baath E (2003) Temperature-dependent changes in the soil bacterial community in limed and unlimited soil. FEMS Microb Ecol 45:13–21. https://doi.org/10.1016/S0168-6496(03)00106-5

    Article  CAS  Google Scholar 

  64. Pancher M, Ceol M, Corneo PE, Longa CMO, Yousaf S, Pertot I (2012) Fungal endophytic communities in grapevines (Vitis vinifera L.) respond to crop management. Appl Environ Microb 78:4308–4317. https://doi.org/10.1128/AEM.07655-11

    Article  CAS  Google Scholar 

  65. Arnold AE, Mejia LC, Kyllo D, Rojas EI, Maynard Z, Robbins N (2003) Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci 100:15649–15654. https://doi.org/10.1073/pnas.2533483100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Andreolli M, Lampis S, Zapparoli G, Angelini E, Vallini G (2016) Diversity of bacterial endophytes in 3- and 15-year-old grapevines of Vitis vinifera cv. Corvina and their potential for plant growth promotion and phytopathogen control. Microbiol Res 183:42–52. https://doi.org/10.1016/j.micres.2015.11.009

    Article  PubMed  Google Scholar 

  67. Mocali S, Bertelli E, Di Cello F, Mengoni A, Sfalanga A, Viliani F (2003) Fluctuation of bacteria isolated from elm tissues during different seasons and from different plant organs. Res J Microb 154:105–114. https://doi.org/10.1016/S0923-2508(03)00031-7

    Article  Google Scholar 

  68. Bulgari D, Casati P, Crepaldi P, Daffonchio D, Quaglino F, Brusetti L (2011) Restructuring of endophytic bacterial communities in grapevine yellows-diseased and recovered Vitis vinifera L. plants. Appl Environ Microbiol 77:5018–5022. https://doi.org/10.1128/AEM.00051-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bulgari D, Casati P, Quaglino F, Bianco PA (2014) Endophytic bacterial community of grapevine leaves influenced by sampling date and phytoplasma infection process. BMC Microbiol 14:1–11. https://doi.org/10.1186/1471-2180-14-198

    Article  Google Scholar 

  70. Campisano A, Antonielli L, Pancher M, Yousaf S, Pindo M, Pertot I (2014) Bacterial endophytic communities in the grapevine depend on pest management. PLoS One 9:112763. https://doi.org/10.1371/journal.pone.0112763

    Article  CAS  Google Scholar 

  71. Bills GF, Polishook JD (1992) Recovery of endophytic fungi from Chamaecyparis thyroides. Sydowia 44:1–12

    Google Scholar 

  72. Arnold AE, Maynard Z, Gilbert GS (2001) Fungal endophytes in dicotyledonous neotropical trees: patterns of abundance and diversity. Mycol Res 105:1502–1507. https://doi.org/10.1017/S0953756201004956

    Article  Google Scholar 

  73. Higgins KL, Arnold AE, Miadlikowska J, Sarvate SD, Lutzoni F (2007) Phylogenetic relationships, host affinity and geographic structure of boreal and arctic endophytes from three major plant lineages. Mol Phylogenet Evol 42:543–555. https://doi.org/10.1016/j.ympev.2006.07.012

    Article  CAS  PubMed  Google Scholar 

  74. Collado J, Platas G, Gonzalez I, Pelaez F (1999) Geographical and seasonal influences on the distribution of fungal endophytes in Quercus ilex. New Phytol 144:525–532. https://doi.org/10.1046/j.1469-8137.1999.00533.x

    Article  CAS  PubMed  Google Scholar 

  75. Collado J, Platas G, Pelaez F (2000) Host specificity in fungal endophytic populations of Quercus ilex and Quercus faginea from central Spain. Nova Hedwigia 71:421–430. https://doi.org/10.1127/nova/71/2000/421

    Article  Google Scholar 

  76. Aleynova OA, Nityagovsky NN, Suprun AR, Ananev AA, Dubrovina AS, Kiselev KV (2022) The diversity of fungal endophytes from wild grape Vitis amurensis R. Plants 11:2897. https://doi.org/10.3390/plants11212897

    Article  PubMed  PubMed Central  Google Scholar 

  77. Grisan S, Martini M, Musetti R, Osler R (2011) Development of a molecular approach to describe the diversity of fungal endophytes in either phytoplasma-infected, recovered or healthy grapevines. Bull Insectol 64:207–208

    Google Scholar 

  78. Lo Piccolo S, Alfonzo A, Giambra S, Conigliaro G, Lopez-Llorca LV, Burruano S (2015) Identification of Acremonium isolates from grapevines and evaluation of their antagonism towards Plasmopara viticola. Ann Microbiol 65:2393–2403. https://doi.org/10.1007/s13213-015-1082-5

    Article  CAS  Google Scholar 

  79. Schmid F, Moser G, Müller H, Berg G (2011) Functional and structural microbial diversity in organic and conventional viticulture: organic farming benefits natural biocontrol agents. Appl Environ Microbiol 77:2188–2191. https://doi.org/10.1128/AEM.02187-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Dissanayake AJ, Purahong W, Wubet T, Hyde KD, Zhang W, Xu H (2018) Direct comparison of culture-dependent and culture-independent molecular approaches reveal the diversity of fungal endophytic communities in stems of grapevine (Vitis vinifera). Fungal Divers 90:85–107. https://doi.org/10.1007/s13225-018-0399-3

    Article  Google Scholar 

  81. Kraus C, Voegele RT, Fischer M (2019) Temporal development of the culturable, endophytic fungal community in healthy grapevine branches and occurrence of GTD-associated fungi. Microb Ecol 77:866–876. https://doi.org/10.1007/s00248-018-1280-3

    Article  PubMed  Google Scholar 

  82. Nilsson RH, Kristiansson E, Ryberg M, Hallenberg N, Larsson KH (2008) Intraspecific ITS variability in the kingdom Fungi as expressed in the international sequence databases and its implications for molecular species identification. Evol Bioinform 4:653

    Article  Google Scholar 

  83. Kernaghan G, Mayerhofer M, Griffin A (2017) Fungal endophytes of wild and hybrid Vitis leaves and their potential for vineyard biocontrol. Can J Micro 63:583–595. https://doi.org/10.1139/cjm-2016-0740

    Article  CAS  Google Scholar 

  84. Wijekoon C, Quill Z (2021) Fungal endophyte diversity in table grapes. Can J Microbiol 67:29–36. https://doi.org/10.1139/cjm-2020-0293

    Article  CAS  PubMed  Google Scholar 

  85. Deyett E, Rolshausen PE (2020) Endophytic microbial assemblage in grapevine. FEMS Microbiol Ecol 96:53. https://doi.org/10.1093/femsec/fiaa053

    Article  CAS  Google Scholar 

  86. Yuan ZL, Zhang CL, Lin FC, Kubicek CP (2010) Identity, diversity and molecular phylogeny of the endophytic mycobiota in the roots of rare wild rice (Oryza granulate) from a nature reserve in Yunnan, China. Appl Environ Microbiol 76:1642–1652. https://doi.org/10.1128/AEM.01911-09

    Article  CAS  PubMed  Google Scholar 

  87. Cannon PF, Simmons CM (2002) Diversity and host preference of leaf endophytic fungi in the Iwokrama Forest Reserve, Guyana. Mycologia 94:210–220. https://doi.org/10.1080/15572536.2003.11833226

    Article  PubMed  Google Scholar 

  88. Fan Y, Gao L, Chang P, Li Z (2020) Endophytic fungal community in grape is correlated to foliar age and domestication. Ann Microbiol 70:1–8. https://doi.org/10.1186/s13213-020-01574-9

    Article  Google Scholar 

  89. Varanda CMR, Oliveira M, Materatski P, Landum M, Clara MIE, Rosario Felix M (2016) Fungal endophytic communities associated to the phyllosphere of grapevine cultivars under different types of management. Fungal Biol 120:1525–1536. https://doi.org/10.1016/j.funbio.2016.08.002

    Article  PubMed  Google Scholar 

  90. Gamboa Gaitan MA, Wen S, Fetcher N, Bayman P (2005) Effects of fungicides on endophytic fungi and photosynthesis in seedlings of a tropical tree, Guarea guidonia (Meliaceae). Acta Biol Colomb 10:41–48

    Google Scholar 

  91. Kiss L, Russell JC, Szentiványi O, Xu X, Jeffries P (2004) Biology and biocontrol potential of Ampelomyces mycoparasites, natural antagonists of powdery mildew fungi. Biocontrol Sci Tech 14:635–651. https://doi.org/10.1080/09583150410001683600

    Article  Google Scholar 

  92. Glare T, Caradus J, Gelernter W, Jackson T, Keyhani N, Kohl J (2012) Have biopesticides come of age? Trends Biotech 30:250–258. https://doi.org/10.1016/j.tibtech.2012.01.003

    Article  CAS  Google Scholar 

  93. Le Cocq K, Gurr SJ, Hirsch PR, Mauchline TH (2017) Exploitation of endophytes for sustainable agricultural intensification. Mol Plant Pathol. https://doi.org/10.1111/mpp.12483

    Article  PubMed  Google Scholar 

  94. Vega FE (2018) The use of fungal entomopathogens as endophytes in biological control: a review. Mycologia 110:4–30

    Article  PubMed  Google Scholar 

  95. De Silva NI, Brooks S, Lumyong S, Hyde KD (2019) Use of endophytes as biocontrol agents. Fungal Biol Rev 33:133–148. https://doi.org/10.1016/j.fbr.2018.10.001

    Article  Google Scholar 

  96. Gonzalez V, Tello ML (2011) The endophytic mycota associated with Vitis vinifera in central Spain. Fungal Divers 47:29–42. https://doi.org/10.1007/s13225-010-0073-x

    Article  Google Scholar 

  97. Shi J, Zeng Q, Liu Y, Pan Z (2012) Alternaria sp. MG1, a resveratrol-producing fungus: isolation, identification and optimal cultivation conditions for resveratrol production. Appl Microbiol Biotech 95:369–379. https://doi.org/10.1007/s00253-012-4045-9

    Article  CAS  Google Scholar 

  98. Dwibedi V, Saxena S (2019) Diversity and phylogeny of resveratrol-producing culturable endophytic fungi from Vitis species in India. 3 Biotech 9:182. https://doi.org/10.1007/s13205-019-1712-x

    Article  PubMed  PubMed Central  Google Scholar 

  99. Carro-Huerga G, Compant S, Gorfer M, Cardoza RE, Schmoll M, Gutiérrez S (2020) Colonization of Vitis vinifera L. by the endophyte Trichoderma sp. strain T154: biocontrol activity against phaeoacremonium minimum. Front Plant Sci 11:1170. https://doi.org/10.3389/fpls.2020.01170

    Article  PubMed  PubMed Central  Google Scholar 

  100. Assante G, Dallavalle S, Malpezzi L, Nasini G, Burruano S, Torta L (2005) Acremines A-F, novel secondary metabolites produced by a strain of an endophytic Acremonium, isolated from sporangiophores of Plasmopara viticola in grapevine leaves. Tetrahedron 61:7686–7692. https://doi.org/10.1016/j.tet.2005.05.094

    Article  CAS  Google Scholar 

  101. Polizzotto R, Andersen B, Martini M, Grisan S, Assante G, Musetti R (2012) A polyphasic approach for the characterization of endophytic Alternaria strains isolated from grapevines. J Microb Methods 88:162–171. https://doi.org/10.1016/j.mimet.2011.11.009

    Article  Google Scholar 

  102. Li Z, Chang P, Gao L, Wang X (2020) The endophytic fungus Albifimbria verrucaria from wild grape as an antagonist of Botrytis cinerea and other grape pathogens. Phytopath 110:843–850. https://doi.org/10.1094/PHYTO-09-19-0347-R

    Article  CAS  Google Scholar 

  103. Sayed S, El-Shehawi A, Al-Otaibi S, El-Shazly S, Al-Otaibi S, Ibrahim R, Alorabi M, Baazeem A, Elseehy M (2020) Isolation and efficacy of the endophytic fungus, Beauveria bassiana (Bals.) vuillemin on grapevine aphid, Aphis illinoisensis Shimer (Hemiptera: Aphididae) under laboratory conditions. Egypt J Biol Pest Control 30:1–7. https://doi.org/10.1186/s41938-020-00234-z

    Article  Google Scholar 

  104. de Almeida B, Concas A, Campos J, Materatski MD, Varanda P, Patanita CM (2020) Endophytic fungi as potential biological control agents against grapevine trunk diseases in Alentejo region. Biology 9:420. https://doi.org/10.3390/biology9120420

    Article  CAS  PubMed  Google Scholar 

  105. Brum MCP, Araujo WL, Maki CS, Azevedo JLD (2012) Endophytic fungi from Vitis labrusca L. (Niagara Rosada) and its potential for the biological control of Fusarium oxysporum. Genet Mol Res 11:4187–4197

    Article  CAS  PubMed  Google Scholar 

  106. Silva-Valderrama I, Toapanta D, Miccono MDLA, Lolas M, Diaz GA, Cantu D (2021) Biocontrol potential of grapevine endophytic and rhizospheric fungi against trunk pathogens. Front Microbiol 11:614620. https://doi.org/10.3389/fmicb.2020.614620

    Article  PubMed  PubMed Central  Google Scholar 

  107. Rodolfi M, Legler SE, Picco AM (2006) Endofiti fungini di Vitis vinifera in Oltrepo Pavese. Micol Ital 35:25

    Google Scholar 

  108. Falk SP, Pearson RC, Gadoury DM, Seem RC, Sztejnberg A (1996) Fusarium proliferatum as a bio control agent against grape downy mildew. Phytopathology 86:1010–1017. https://doi.org/10.1094/Phyto-86-1010

    Article  Google Scholar 

  109. Garoe NT, Cabrera R, Lisbel BRR, Da Silva EG, Cristina CA, Nelida B (2012) Endophytic fungi from Vitis vinifera L. isolated in Canary Islands and Azores as potential biocontrol agents of Botrytis cinerea Pers Fr. J Hort Forest Biotech 16:1–6

    Google Scholar 

  110. Kovacs C, Csoto A, Pal K, Nagy A, Fekete E, Karaffa L (2021) The biocontrol potential of endophytic Trichoderma fungi isolated from Hungarian grapevines. Part I. Isolation, identification and in vitro studies. Pathogens 10:1612. https://doi.org/10.3390/pathogens101216126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mishra A, Singh SP, Mahfooz S, Bhattacharya A, Mishra N, Shirke PA, Nautiyal CS (2018) Bacterial endophytes modulates the withanolide biosynthetic pathway and physiological performance in Withania somnifera under biotic stress. Microbiol Res 212:17–28. https://doi.org/10.1016/j.micres.2018.04.006

    Article  CAS  PubMed  Google Scholar 

  112. Dash CK, Bamisile BS, Keppanan R, Qasim M, Lin Y, Islam SU, Hussain M, Wang L (2018) Endophytic entomopathogenic fungi enhance the growth of Phaseolus vulgaris L. (Fabaceae) and negatively affect the development and reproduction of Tetranychus urticae Koch (Acari: Tetranychidae). Microb Pathol 125:385–392. https://doi.org/10.1016/j.micpath.2018.09.044

    Article  Google Scholar 

  113. Jaber LR (2018) Seed inoculation with endophytic fungal entomopathogens promotes plant growth and reduces crown and root rot (CRR) caused by Fusarium culmorum in wheat. Planta 248:1525–1535. https://doi.org/10.1007/s00425-018-2991-x

    Article  CAS  PubMed  Google Scholar 

  114. Yuan ZS, Liu F, Xie BG, Zhang GF (2018) The growth-promoting effects of endophytic bacteria on Phyllostachys edulis. Arch Microbiol 200:921–927. https://doi.org/10.1007/s00203-018-1500-8

    Article  CAS  PubMed  Google Scholar 

  115. Tall S, Meyling NV (2018) Probiotics for plants? Growth promotion by the entomopathogenic fungus Beauveria bassiana depends on nutrient availability. Microb Ecol 76:1002–1008. https://doi.org/10.1007/s00248-018-1180-6

    Article  CAS  PubMed  Google Scholar 

  116. Yang MZ, Ma MD, Yuan MQ, Huang ZY, Yang WX, Zhang HB, Huang LH, Ren AY, Shan H (2016) Fungal endophytes as a metabolic fine-tuning regulator for wine grape. PLoS ONE 11:0163186. https://doi.org/10.1371/journal.pone.0163186

    Article  CAS  Google Scholar 

  117. Huang LH, Yuan MQ, Ao XJ, Ren AY, Zhang HB, Yang MZ (2018) Endophytic fungi specifically introduce novel metabolites into grape flesh cells in vitro. PLoS ONE 13:e0196996. https://doi.org/10.1371/journal.pone.0196996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502. https://doi.org/10.1128/mmbr.67.4.491-502.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Aly AH, Debbab A, Kjer J, Proksch P (2010) Fungal endophytes from higher plants: a prolific source of phytochemicals and other bioactive natural products. Fungal Divers 41:1–16. https://doi.org/10.1007/s13225-010-0034-4

    Article  Google Scholar 

  120. Liu Y, Nan L, Liu J, Yan H, Zhang D, Han X (2016) Isolation and identification of resveratrol-producing endophytes from wine grape Cabernet Sauvignon. Springer plus 5:1–13. https://doi.org/10.1186/s40064-016-2571-0

    Article  CAS  Google Scholar 

  121. Csoto A, Kovacs C, Pal K, Nagy A, Peles F, Fekete E, Karaffa L, Sandor KCP, E, (2022) The biocontrol potential of endophytic Trichoderma fungi isolated from Hungarian grapevines, Part II. Grapevine Stimulation Pathogens 12:2. https://doi.org/10.3390/pathogens12010002

    Article  CAS  PubMed  Google Scholar 

  122. Ferrigo D, Causin R, Raiola A (2017) Effect of potential biocontrol agents selected among grapevine endophytes and commercial products on crown gall disease. Bio Control 62:821–833

    Google Scholar 

  123. Cosoveanu A, Gimenez-Marino C, Cabrera Y, Hernandez G, Cabrera R (2014) Endophytic fungi from grapevine cultivars in Canary Islands and their activity against phytopatogenic fungi. Intl J Agric Crop Sci 7:1497

    Google Scholar 

Download references

Acknowledgements

All the authors highly acknowledge the support provided by the Director, ICAR-National Research Centre, Pune to carry out the proposed research work.

Author information

Authors and Affiliations

Authors

Contributions

The authors declare that they have no conflict of interest in the publication. SKH: conceived idea and formulated the review and collected the review of literature and reviewed manuscript; PSG: collected review of literature and drafted the manuscript; HNM: general formatting and editing VCB: collected review and drafted the manuscript; SS and KB: critically reviewed the manuscript.

Corresponding author

Correspondence to Somnath Kadappa Holkar.

Ethics declarations

Conflict of interest

All the authors declare that there is no potential conflict of interest.

Research Involving Human Participants and Animals

In the present study no humans or animals were used.

Informed Consent

No humans or animals were used in the present study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holkar, S.K., Ghotgalkar, P.S., Markad, H.N. et al. Current Status and Future Perspectives on Distribution of Fungal Endophytes and Their Utilization for Plant Growth Promotion and Management of Grapevine Diseases. Curr Microbiol 81, 116 (2024). https://doi.org/10.1007/s00284-024-03635-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-024-03635-7

Navigation