Skip to main content
Log in

Structural Characterization and Functional Studies of Exopolysaccharide by Native Lacticaseibacillus rhamnosus P14 Isolated from the Moroccan Region

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Exopolysaccharides (EPS) are natural polymers synthesized by several microorganisms, including lactic acid bacteria (LAB). They are characterized by a great structural diversity, which gives them interesting biological and pharmacological properties. This work investigates the physicochemical and biological characterization of a new exopolysaccharide (EPS) produced by a wild Lacticaseibacillus rhamnosus P14. The functional groups, chemical bonds, and thermal and morphological properties of the purified EPS-P14 were determined using Fourier Transform Infrared, Nuclear Magnetic Resonance, and X-ray diffraction spectroscopies, as well as Thermo-gravimetric analysis, Differential Scanning Calorimetry and Scanning Electron Microscopy. The functional properties, namely antioxidant and emulsifying activities, were also assessed. The physicochemical analysis revealed that EPS-P14 is a porous and thermally stable polysaccharide with a degradation temperature of 307 °C. NMR and FT-IR studies identified it as a homogeneous α-D-glucan with mainly α-(1 → 6) glycosidic linkage and some α-(1 → 3) branching. EPS-P14 was highly water-soluble and exhibited strong emulsifying and stabilizing properties in a concentration-dependent manner. Furthermore, EPS-P14 demonstrated significant DPPH scavenging and ferric-reducing capacities. These findings suggest that EPS-P14 is a bioactive polysaccharide with potential effects, which could be a promising natural candidate for prospective application.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tiwari S, Kavitake D, Devi PB, Halady Shetty P (2021) Bacterial exopolysaccharides for improvement of technological, functional and rheological properties of yoghurt. Int J Biol Macromol 183:1585–1595. https://doi.org/10.1016/j.ijbiomac.2021.05.140

    Article  CAS  PubMed  Google Scholar 

  2. Madhubasani GBL, Prasanna PHP, Chandrasekara A et al (2020) Exopolysaccharide producing starter cultures positively influence on microbiological, physicochemical, and sensory properties of probiotic goats’ milk set-yoghurt. J Food Process Preserv. https://doi.org/10.1111/jfpp.14361

    Article  Google Scholar 

  3. Khedr OMS, El-Sonbaty SM, Moawed FSM et al (2022) Lactobacillus acidophilus ATCC 4356 exopolysaccharides suppresses mediators of inflammation through the inhibition of TLR2/STAT-3/P38-MAPK pathway in DEN-induced hepatocarcinogenesis in rats. Nutrition Cancer 74(3):1037–1047

    Article  CAS  PubMed  Google Scholar 

  4. Rahbar Saadat Y, Yari Khosroushahi A, Pourghassem Gargari B (2019) A comprehensive review of anticancer, immunomodulatory and health beneficial effects of the lactic acid bacteria exopolysaccharides. Carbohydr Polym 217:79–89. https://doi.org/10.1016/j.carbpol.2019.04.025

    Article  CAS  PubMed  Google Scholar 

  5. Adebayo-Tayo B, Fashogbon R (2020) In vitro antioxidant, antibacterial, in vivo immunomodulatory, antitumor and hematological potential of exopolysaccharide produced by wild type and mutant Lactobacillus delbureckii subsp bulgaricus. Heliyon. 6:e03268. https://doi.org/10.1016/j.heliyon.2020.e03268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wu J, Zhang Y, Ye L, Wang C (2021) The anti-cancer effects and mechanisms of lactic acid bacteria exopolysaccharides in vitro: a review. Carbohydr Polym 253:117308. https://doi.org/10.1016/j.carbpol.2020.117308

    Article  CAS  PubMed  Google Scholar 

  7. Angelin J, Kavitha M (2020) Exopolysaccharides from probiotic bacteria and their health potential. Int J Biol Macromol 162:853–865. https://doi.org/10.1016/j.ijbiomac.2020.06.190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ayyash M, Abu-Jdayil B, Itsaranuwat P et al (2020) Characterization, bioactivities, and rheological properties of exopolysaccharide produced by novel probiotic Lactobacillus plantarum C70 isolated from camel milk. Int J Biol Macromol 144:938–946. https://doi.org/10.1016/j.ijbiomac.2019.09.171

    Article  CAS  PubMed  Google Scholar 

  9. Li M, Li W, Li D et al (2022) Structure characterization, antioxidant capacity, rheological characteristics and expression of biosynthetic genes of exopolysaccharides produced by Lactococcus lactis subsp lactis IMAU11823. Food Chem 384:132566. https://doi.org/10.1016/j.foodchem.2022.132566

    Article  CAS  PubMed  Google Scholar 

  10. Riaz Rajoka MS, Mehwish HM, Zhang H et al (2020) Antibacterial and antioxidant activity of exopolysaccharide mediated silver nanoparticle synthesized by Lactobacillus brevis isolated from Chinese koumiss. Colloids Surf B Biointerf 186:110734. https://doi.org/10.1016/j.colsurfb.2019.110734

    Article  CAS  Google Scholar 

  11. Andrew M, Jayaraman G (2020) Structural features of microbial exopolysaccharides in relation to their antioxidant activity. Carbohydr Res 487:107881. https://doi.org/10.1016/j.carres.2019.107881

    Article  CAS  PubMed  Google Scholar 

  12. Khalil MA (2022) Exploring the therapeutic potentials of exopolysaccharides derived from lactic acid bacteria and bifidobacteria: antioxidant, antitumor, and periodontal regeneration. Front Microbiol 13:19

    Article  Google Scholar 

  13. Akhtach S, Tabia Z, Bricha M et al (2021) Investigation on exopolysaccharide production by Lacticaseibacillus rhamnosus P14 isolated from Moroccan raw cow’s milk. J Food Sci 86:4840–4850. https://doi.org/10.1111/1750-3841.15941

    Article  CAS  PubMed  Google Scholar 

  14. Kimmel SA, Roberts RF, Ziegler GR (1998) Optimization of exopolysaccharide production bylactobacillus delbrueckii subsp. bulgaricus RR grown in a semidefined medium. Appl Environ Microbiol 64:659–664

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sharma K, Sharma N, Handa S, Pathania S (2020) Purification and characterization of novel exopolysaccharides produced from Lactobacillus paraplantarum KM1 isolated from human milk and its cytotoxicity. J Genet Eng Biotechnol 18:56. https://doi.org/10.1186/s43141-020-00063-5

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dubois KA, Gilles JK, Hamilton, et al (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  17. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  18. Yang Y, Feng F, Zhou Q et al (2018) Isolation, purification and characterization of exopolysaccharide produced by Leuconostoc pseudomesenteroides YF32 from soybean paste. Int J Biol Macromol 114:529–535. https://doi.org/10.1016/j.ijbiomac.2018.03.162

    Article  CAS  PubMed  Google Scholar 

  19. Trabelsi I, Ktari N, Triki M et al (2018) Physicochemical, techno-functional, and antioxidant properties of a novel bacterial exopolysaccharide in cooked beef sausage. Int J Biol Macromol 111:11–18. https://doi.org/10.1016/j.ijbiomac.2017.12.127

    Article  CAS  PubMed  Google Scholar 

  20. Cheng Y, Xiao X, Li X et al (2017) Characterization, antioxidant property and cytoprotection of exopolysaccharide-capped elemental selenium particles synthesized by Bacillus paralicheniformis SR14. Carbohydr Polym 178:18–26. https://doi.org/10.1016/j.carbpol.2017.08.124

    Article  CAS  PubMed  Google Scholar 

  21. Oyaizu M (1986) Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr Diet 44:307–315. https://doi.org/10.5264/eiyogakuzashi.44.307

    Article  CAS  Google Scholar 

  22. Pei F, Ma Y, Chen X, Liu H (2020) Purification and structural characterization and antioxidant activity of levan from Bacillus megaterium PFY-147. Int J Biol Macromol 161:1181–1188. https://doi.org/10.1016/j.ijbiomac.2020.06.140

    Article  CAS  PubMed  Google Scholar 

  23. Feng F, Zhou Q, Yang Y et al (2019) Structural characterization of glucan produced by lactobacillus sake l-7 from sausage. Trans Tianjin Univ 25:78–84. https://doi.org/10.1007/s12209-018-0150-x

    Article  CAS  Google Scholar 

  24. Wang Y, Sun T, Wang Y et al (2021) Production and characterization of insoluble α-1,3-linked glucan and soluble α-1,6-linked dextran from Leuconostoc pseudomesenteroides G29. Chin J Chem Eng 39:211–218. https://doi.org/10.1016/j.cjche.2021.06.020

    Article  CAS  Google Scholar 

  25. You X, Yang L, Zhao X et al (2020) Isolation, purification, characterization and immunostimulatory activity of an exopolysaccharide produced by Lactobacillus pentosus LZ-R-17 isolated from Tibetan kefir. Int J Biol Macromol 158:408–419. https://doi.org/10.1016/j.ijbiomac.2020.05.027

    Article  CAS  PubMed  Google Scholar 

  26. Bai Y, Luo B, Zhang Y et al (2021) Exopolysaccharides produced by Pediococcus acidilactici MT41-11 isolated from camel milk: structural characteristics and bioactive properties. Int J Biol Macromol 185:1036–1049. https://doi.org/10.1016/j.ijbiomac.2021.06.152

    Article  CAS  PubMed  Google Scholar 

  27. Hu S-M (2021) Purification, characterization and biological activities of exopolysaccharides from Lactobacillus rhamnosus ZFM231 isolated from milk. LWT. https://doi.org/10.1016/j.lwt.2021.111561

    Article  Google Scholar 

  28. Ye G, Li G, Wang C et al (2019) Extraction and characterization of dextran from Leuconostoc pseudomesenteroides YB-2 isolated from mango juice. Carbohydr Polym 207:218–223. https://doi.org/10.1016/j.carbpol.2018.11.092

    Article  CAS  PubMed  Google Scholar 

  29. Heperkan ZD, Bolluk M, Bülbül S (2020) Structural analysis and properties of dextran produced by Weissella confusa and the effect of different cereals on its rheological characteristics. Int J Biol Macromol 143:305–313. https://doi.org/10.1016/j.ijbiomac.2019.12.036

    Article  CAS  PubMed  Google Scholar 

  30. Mathivanan K, Chandirika JU, Mathimani T et al (2021) Production and functionality of exopolysaccharides in bacteria exposed to a toxic metal environment. Ecotoxicol Environ Saf 208:111567. https://doi.org/10.1016/j.ecoenv.2020.111567

    Article  CAS  PubMed  Google Scholar 

  31. Ismail B, Nampoothiri KM (2010) Production, purifi cation and structural characterization of an exopolysaccharide produced by a probiotic Lactobacillus plantarum MTCC 9510. Arch Microbiol. https://doi.org/10.1007/s00203-010-0636-y

    Article  PubMed  Google Scholar 

  32. Llamas-Arriba MG, Puertas AI, Prieto A et al (2019) Characterization of dextrans produced by Lactobacillus mali CUPV271 and Leuconostoc carnosum CUPV411. Food Hydrocoll 89:613–622. https://doi.org/10.1016/j.foodhyd.2018.10.053

    Article  CAS  Google Scholar 

  33. Wang B, Song Q, Zhao F et al (2019) Purification and characterization of dextran produced by Leuconostoc pseudomesenteroides PC as a potential exopolysaccharide suitable for food applications. Process Biochem 87:187–195. https://doi.org/10.1016/j.procbio.2019.08.020

    Article  CAS  Google Scholar 

  34. Wang K, Niu M, Wu Y et al (2019) Physicochemical characterization and antioxidant activity of cell-bound exopolysaccharides from Lactobacillus fermentum S1 obtained by two extraction methods. Process Biochem 85:195–205. https://doi.org/10.1016/j.procbio.2019.06.017

    Article  CAS  Google Scholar 

  35. Diana C-R, Humberto H-S, Jorge Y-F (2019) Structural characterization and rheological properties of dextran produced by native strains isolated of Agave salmiana. Food Hydrocoll 90:1–8. https://doi.org/10.1016/j.foodhyd.2018.11.052

    Article  CAS  Google Scholar 

  36. Zehir Şentürk D, Dertli E, Erten H, Şimşek Ö (2020) Structural and technological characterization of ropy exopolysaccharides produced by Lactobacillus plantarum strains isolated from Tarhana. Food Sci Biotechnol 29:121–129. https://doi.org/10.1007/s10068-019-00641-5

    Article  CAS  PubMed  Google Scholar 

  37. Kumar R, Bansal P, Singh J, Dhanda S (2020) Purification, partial structural characterization and health benefits of exopolysaccharides from potential probiotic Pediococcus acidilactici NCDC 252. Process Biochem 99:79–86. https://doi.org/10.1016/j.procbio.2020.08.028

    Article  CAS  Google Scholar 

  38. Charoenwongpaiboon T, Wangpaiboon K, Pichyangkura R et al (2021) Characterization of a nanoparticulate exopolysaccharide from Leuconostoc holzapfelii KM01 and its potential application in drug encapsulation. Int J Biol Macromol 187:690–698. https://doi.org/10.1016/j.ijbiomac.2021.07.174

    Article  CAS  PubMed  Google Scholar 

  39. Wangpaiboon K, Waiyaseesang N, Panpetch P et al (2020) Characterisation of insoluble α-1,3-/α-1,6 mixed linkage glucan produced in addition to soluble α-1,6-linked dextran by glucansucrase (DEX-N) from Leuconostoc citreum ABK-1. Int J Biol Macromol 152:473–482. https://doi.org/10.1016/j.ijbiomac.2020.02.247

    Article  CAS  PubMed  Google Scholar 

  40. Zhao D, Jiang J, Liu L et al (2021) Characterization of exopolysaccharides produced by Weissella confusa XG-3 and their potential biotechnological applications. Int J Biol Macromol 178:306–315. https://doi.org/10.1016/j.ijbiomac.2021.02.182

    Article  CAS  PubMed  Google Scholar 

  41. Yilmaz MT, Ispirli H, Taylan O et al (2022) Bioactive and technological properties of an α-D-glucan synthesized by Weissella cibaria PDER21. Carbohydr Polym 285:119227. https://doi.org/10.1016/j.carbpol.2022.119227

    Article  CAS  PubMed  Google Scholar 

  42. Zhu Y, Wang X, Pan W et al (2019) Exopolysaccharides produced by yogurt-texture improving Lactobacillus plantarum RS20D and the immunoregulatory activity. Int J Biol Macromol 121:342–349. https://doi.org/10.1016/j.ijbiomac.2018.09.201

    Article  CAS  PubMed  Google Scholar 

  43. İspirli H (2019) Physicochemical characterisation of an α-glucan from Lactobacillus reuteri E81 as a potential exopolysaccharide suitable for food applications. Process Biochem. https://doi.org/10.1016/j.procbio.2018.12.015

    Article  Google Scholar 

  44. Yang Y, Peng Q, Guo Y et al (2015) Isolation and characterization of dextran produced by Leuconostoc citreum NM105 from manchurian sauerkraut. Carbohydr Polym 133:365–372. https://doi.org/10.1016/j.carbpol.2015.07.061

    Article  CAS  PubMed  Google Scholar 

  45. Reddy Shetty P, Batchu UR, Buddana SK et al (2021) A comprehensive review on α-D-Glucans: structural and functional diversity, derivatization and bioapplications. Carbohydr Res 503:108297. https://doi.org/10.1016/j.carres.2021.108297

    Article  CAS  PubMed  Google Scholar 

  46. Willumsen PA, Karlson U (1997) Screening of bacteria, isolated from PAH-contaminated soils, for production of biosurfactants and bioemulsifiers. Biodegradation 7:415–423. https://doi.org/10.1007/BF00056425

    Article  Google Scholar 

  47. Jiang J, Guo S, Ping W et al (2020) Optimization production of exopolysaccharide from Leuconostoc lactis L2 and its partial characterization. Int J Biol Macromol 159:630–639. https://doi.org/10.1016/j.ijbiomac.2020.05.101

    Article  CAS  PubMed  Google Scholar 

  48. Zhang Y, Chen X, Hu P et al (2021) Extraction, purification, and antioxidant activity of exopolysaccharides produced by Lactobacillus kimchi SR8 from sour meat in vitro and in vivo. CyTA - J Food 19:228–237. https://doi.org/10.1080/19476337.2021.1883117

    Article  CAS  Google Scholar 

  49. Farinazzo FS, Valente LJ, Almeida MB et al (2019) Characterization and antioxidant activity of an exopolysaccharide produced by Leuconostoc pseudomesenteroides JF17 from juçara fruits (Euterpe edulis Martius). Process Biochem. https://doi.org/10.1016/j.procbio.2019.12.005

    Article  Google Scholar 

  50. Shang H, Wang M, Li R et al (2018) Extraction condition optimization and effects of drying methods on physicochemical properties and antioxidant activities of polysaccharides from Astragalus cicer L. Sci Rep 8:3359. https://doi.org/10.1038/s41598-018-21295-z

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rahnama Vosough P, Habibi Najafi MB, Edalatian Dovom MR et al (2021) Evaluation of antioxidant, antibacterial and cytotoxicity activities of exopolysaccharide from Enterococcus strains isolated from traditional Iranian Kishk. J Food Meas Charact 15:5221–5230. https://doi.org/10.1007/s11694-021-01092-5

    Article  Google Scholar 

  52. Shankar T, Palpperumal S, Kathiresan D et al (2021) Biomedical and therapeutic potential of exopolysaccharides by Lactobacillus paracasei isolated from sauerkraut: screening and characterization. Saudi J Biol Sci 28:2943–2950. https://doi.org/10.1016/j.sjbs.2021.02.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Choi IS, Ko SH, Lee ME et al (2021) Production, characterization, and antioxidant activities of an exopolysaccharide extracted from spent media wastewater after Leuconostoc mesenteroides WiKim32 fermentation. ACS Omega 6:8171–8178. https://doi.org/10.1021/acsomega.0c06095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yang X, Ren Y, Zhang L et al (2021) Structural characteristics and antioxidant properties of exopolysaccharides isolated from soybean protein gel induced by lactic acid bacteria. LWT 150:111811. https://doi.org/10.1016/j.lwt.2021.111811

    Article  CAS  Google Scholar 

Download references

Funding

The authors are grateful to the National Centre of Scientific and Technological Research (CNRST, Rabat, Morocco) for supporting this work and to the Euromed University of Fes.

Author information

Authors and Affiliations

Authors

Contributions

SA, KE, and RB contributed to the study conception and design. SA performed experiments and wrote the manuscript, and ZT helped in analyzing and interpreting the characterization data and performed statistical analyses. All the authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Mabrouk El Khalil.

Ethics declarations

Competing interests

The authors declare no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sihame, A., Zakaria, T., Khalil, M.E. et al. Structural Characterization and Functional Studies of Exopolysaccharide by Native Lacticaseibacillus rhamnosus P14 Isolated from the Moroccan Region. Curr Microbiol 81, 96 (2024). https://doi.org/10.1007/s00284-024-03611-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-024-03611-1

Navigation