Skip to main content

Advertisement

Log in

Virulence Genes and Biofilm Formation Among Legionella pneumophila Isolates Collected from Hospital Water Sources

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Legionella pneumophila can be transmitted to people, especially immunocompromised patients, via hospital water pipe systems and cause severe pneumonia. The aim of our study was to investigate the presence of major virulence factor genes, ability of biofilms formation, and correlation between presence of Legionella isolates and temperature, pH, and residual chlorine of water. Hundred water samples were collected from nine hospitals in Tehran, Iran. Temperature, pH, and residual chlorine were determined during sampling. Different virulence genes and the ability to form biofilms were subsequently analyzed among the L. pneumophila isolates. Results showed that 12 (12%) samples were positive in culture method and all of the isolates were positive as L. pneumophila species (mip). A correlation was found between Legionella culture positivity and temperature and pH of water, but there was no significant correlation between residual chlorine of water samples and the presence of Legionella. The isolation of Legionella rate in summer and spring was higher than winter and autumn. Twelve (100%) isolates were positive for mip genes, 9 (75%) for dot genes, 8 (66.66%) for hsp, 6 (50%) for lvh, and 4 (33.33%) for rtx. All of the isolates displayed strong ability for biofilm production every three days. Two of these isolates (16.6%) displayed weak ability to form biofilm on the first day of incubation. This study revealed that water sources in hospitals were colonized by virulent Legionella and should be continuously monitored to avoid elevated concentrations of Legionella with visible biofilm formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data are available upon request from the corresponding author.

References

  1. Zhu Q-Y (2015) Legionella pathogenesis and virulence factors. Annals of Clinical and Laboratory Research 3(2):15

    Google Scholar 

  2. Villari P, Motti E, Farullo C, Torre I (1998) Comparison of conventional culture and PCR methods for the detection of Legionella pneumophila in water. Lett Appl Microbiol 27(2):106–110. https://doi.org/10.1046/j.1472-765X.1998.00389.x

    Article  CAS  PubMed  Google Scholar 

  3. Mirkalantari S (2015) Comparison of PCR and Culture for Detection of Legionella pneumophila in Bronchoalveolar Fluid Samples. Journal of Pure and Applied Microbiology 9(2):421–4224

    CAS  Google Scholar 

  4. Wright AJ, Humar A, Gourishankar S, Bernard K, Kumar D (2012) Severe Legionnaire’s disease caused by Legionella longbeachae in a long-term renal transplant patient: the importance of safe living strategies after transplantation. Transpl Infect Dis 14(4):E30–E33. https://doi.org/10.1111/j.1399-3062.2012.00755.x

    Article  CAS  PubMed  Google Scholar 

  5. Al-Matawah QA, Al-Zenki SF, Qasem JA, Al-Waalan TE, Ben Heji AH (2012) Detection and Quantification of Legionella pneumophila from Water Systems in Kuwait Residential Facilities. J Pathog 2012:138389. https://doi.org/10.1155/2012/138389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Katsiaflaka A, Pournaras S, Kristo I, Mouchtouri VA, Kyritsi M, Velonakis E et al (2016) Epidemiological Investigation of Legionella pneumophila Serogroup 2 to 14 Isolates from Water Samples by Amplified Fragment Length Polymorphism and Sequence-Based Typing and Detection of Virulence Traits. Appl Environ Microbiol 82(20):6102–6108. https://doi.org/10.1128/AEM.01672-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mou Q, Leung PH (2018) Differential expression of virulence genes in Legionella pneumophila growing in Acanthamoeba and human monocytes. Virulence 9(1):185–196

    Article  CAS  PubMed  Google Scholar 

  8. Misch EA (2016) Legionella: virulence factors and host response. Curr Opin Infect Dis 29(3):280–286. https://doi.org/10.1080/21505594.2017.1373925

    Article  CAS  PubMed  Google Scholar 

  9. Garcia-Nunez M, Sopena N, Ragull S, Pedro-Botet ML, Morera J, Sabria M (2008) Persistence of Legionella in hospital water supplies and nosocomial Legionnaires’ disease. FEMS Immunol Med Microbiol 52(2):202–206. https://doi.org/10.1111/j.1574-695X.2007.00362.x

    Article  CAS  PubMed  Google Scholar 

  10. Liu WK, Healing DE, Yeomans JT, Elliott TS (1993) Monitoring of hospital water supplies for Legionella. J Hosp Infect. 24(1):1–9. https://doi.org/10.1016/0195-6701(93)90084-D

    Article  CAS  PubMed  Google Scholar 

  11. Asrat S, Dugan AS, Isberg RR (2014) The frustrated host response to Legionella pneumophila is bypassed by MyD88-dependent translation of pro-inflammatory cytokines. PLoS Pathog. 10(7):e1004229. https://doi.org/10.1371/journal.ppat.1004229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huang B, Yuan Z, Heron BA, Gray BR, Eglezos S, Bates JR et al (2006) Distribution of 19 major virulence genes in Legionella pneumophila serogroup 1 isolates from patients and water in Queensland. Australia J Med Microbiol 55(Pt 8):993–997. https://doi.org/10.1099/jmm.0.46310-0

    Article  CAS  PubMed  Google Scholar 

  13. D’Alessandro D, Fabiani M, Cerquetani F, Orsi GB (2015) Trend of Legionella colonization in hospital water supply. Ann Ig 27(2):460–466

    CAS  PubMed  Google Scholar 

  14. Chen DJ, Procop GW, Vogel S, Yen-Lieberman B, Richter SS (2015) Utility of PCR, culture, and antigen detection methods for diagnosis of legionellosis. J Clin Microbiol 53(11):3474. https://doi.org/10.1128/JCM.01808-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liguori G, Di Onofrio V, Gallè F, Liguori R, Nastro RA, Guida M (2014) Occurrence of Legionella spp. in thermal environments: Virulence factors and biofilm formation in isolates from a spa. Microchem J. https://doi.org/10.1016/j.microc.2013.09.023

    Article  Google Scholar 

  16. D’Auria G, Jiménez N, Peris-Bondia F, Pelaz C, Latorre A, Moya A (2008) Virulence factor rtx in Legionella pneumophila, evidence suggesting it is a modular multifunctional protein. BMC Genomics. https://doi.org/10.1186/1471-2164-9-14

    Article  PubMed  PubMed Central  Google Scholar 

  17. Arslan-Aydogdu EO, Kimiran A (2018) An investigation of virulence factors of Legionella pneumophila environmental isolates. Braz J Microbiol 49(1):189–199. https://doi.org/10.1016/j.bjm.2017.03.012

    Article  CAS  PubMed  Google Scholar 

  18. Whiley H, Taylor M (2016) Legionella detection by culture and qPCR: Comparing apples and oranges. Crit Rev Microbiol 42(1):65–74. https://doi.org/10.3109/1040841X.2014.885930

    Article  CAS  PubMed  Google Scholar 

  19. Abu Khweek A, Amer AO (2018) Factors Mediating Environmental Biofilm Formation by Legionella pneumophila. Front Cell Infect Microbiol 8:38. https://doi.org/10.3389/fcimb.2018.00038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chaabna Z, Forey F, Reyrolle M, Jarraud S, Atlan D, Fontvieille D et al (2013) Molecular diversity and high virulence of Legionella pneumophila strains isolated from biofilms developed within a warm spring of a thermal spa. BMC Microbiol 13:17. https://doi.org/10.1186/1471-2180-13-17

    Article  PubMed  PubMed Central  Google Scholar 

  21. Marra A, Blander SJ, Horwitz MA, Shuman HA (1992) Identification of a Legionella pneumophila locus required for intracellular multiplication in human macrophages. Proc Natl Acad Sci U S A 89(20):9607–9611. https://doi.org/10.1073/pnas.89.20.960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fields BS (2002) Legionellae and Legionnaires’ Disease. In: Hurst CJ, Crawford RL, Knudsen GR, McInerney MJ, Stetzenbach LD (eds) Manual of Environmental Microbiology, 2nd edn. ASM Press, Washington, D.C., pp 860–870

    Google Scholar 

  23. Hindre T, Bruggemann H, Buchrieser C, Hechard Y (2008) Transcriptional profiling of Legionella pneumophila biofilm cells and the influence of iron on biofilm formation. Microbiology 154(Pt 1):30–41. https://doi.org/10.1099/mic.0.2007/008698-0

    Article  CAS  PubMed  Google Scholar 

  24. Stepanovic S, Vukovic D, Hola V, Di Bonaventura G, Djukic S, Cirkovic I et al (2007) Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS 115(8):891–899. https://doi.org/10.1111/j.1600-0463.2007.apm_630.x

    Article  PubMed  Google Scholar 

  25. Shevchuk O, Jäger J, Steinert M (2011) Virulence properties of the Legionella pneumophila cell envelope. Front Microbiol 2:74. https://doi.org/10.3389/fmicb.2011.00074

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lee J, Lai S, Exner M, Lenz J, Gaia V, Casati S et al (2011) An international trial of quantitative PCR for monitoring Legionella in artificial water systems. J Appl Microbiol 110(4):1032–1044. https://doi.org/10.1111/j.1365-2672.2011.04957.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Joly P, Falconnet P-A, André J, Weill N, Reyrolle M, Vandenesch F et al (2006) Quantitative real-time Legionella PCR for environmental water samples: data interpretation. Appl Environ Microbiol 72(4):2801–2808. https://doi.org/10.1128/AEM.72.4.2801-2808.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tachibana M, Nakamoto M, Kimura Y, Shimizu T, Watarai M (2013) Characterization of Legionella pneumophila isolated from environmental water and ashiyu foot spa. Biomed Res Int 2013:514395. https://doi.org/10.1155/2013/514395

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ahmadi Jalali Moghadam M, Honarmand H, Asfaram Meshginshahr S, Soltani Tehrani B, Nojavan M (2013) Frequency of Legionella pneumophila in tap water and water of infant incubators in Guilan hospitals. Iran. J Mazandaran Univ of Med Sci 23(98):312–321

    Google Scholar 

  30. Dimitriadi D, Velonakis E (2014) Detection of Legionella spp. from domestic water in the prefecture of Arta, Greece. J Pathogens. https://doi.org/10.1155/2014/407385

    Article  Google Scholar 

  31. Edagawa A, Kimura A, Doi H, Tanaka H, Tomioka K, Sakabe K et al (2008) Detection of culturable and nonculturable Legionella species from hot water systems of public buildings in Japan. J Appl Microbiol 105(6):2104. https://doi.org/10.1111/j.1365-2672.2008.03932.x

    Article  CAS  PubMed  Google Scholar 

  32. Rafiee M, Mesdaghinia A, Hajjaran H, Hajaghazadeh M, Miahipour A, Jahangiri-Rad M (2014) The efficacy of residual chlorine content on the control of Legionella spp. in hospital water systems. Iranian J Public Health 43(5):637

    Google Scholar 

  33. Leoni E, Legnani P, Sabattini MB, Righi F (2001) Prevalence of Legionella spp. in swimming pool environment. Water Res 35(15):3749–3753. https://doi.org/10.1016/S0043-1354(01)00075-6

    Article  CAS  PubMed  Google Scholar 

  34. Ohno A, Kato N, Yamada K, Yamaguchi K (2003) Factors influencing survival of Legionella pneumophila serotype 1 in hot spring water and tap water. Appl Environ Microbiol 69(5):2540–2547. https://doi.org/10.1128/AEM.69.5.2540-2547.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Veenendaal HR, Brouwer-Hanzens AJ, van der Kooij D (2017) Incubation of premise plumbing water samples on Buffered Charcoal Yeast Extract agar at elevated temperature and pH selects for Legionella pneumophila. Water Res 123:439–447. https://doi.org/10.1016/j.watres.2017.06.077

    Article  CAS  PubMed  Google Scholar 

  36. De Giglio O, Fasano F, Diella G, Lopuzzo M, Napoli C, Apollonio F et al (2019) Legionella and legionellosis in touristic-recreational facilities: Influence of climate factors and geostatistical analysis in Southern Italy (2001–2017). Environ Res 178:108721. https://doi.org/10.1016/j.envres.2019.108721

    Article  CAS  PubMed  Google Scholar 

  37. Żbikowska E, Kletkiewicz H, Walczak M, Burkowska A (2014) Coexistence of Legionella pneumophila bacteria and free-living amoebae in lakes serving as a cooling system of a power plant. Water, Air, & Soil Pollution. 225(8):2066. https://doi.org/10.1016/j.envres.2019.108721

    Article  CAS  Google Scholar 

  38. Cirillo SL, Bermudez LE, El-Etr SH, Duhamel GE, Cirillo JD (2001) Legionella pneumophila Entry GenertxA Is Involved in Virulence. Infect Immun 69(1):508–517. https://doi.org/10.1128/IAI.69.1.508-517.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Khweek AA, Amer AO (2019) Biofilm, a cozy structure for legionella pneumophila growth and persistence in the environment.  Bacterial biofilms. IntechOpen, London

    Google Scholar 

  40. Assaidi A, Ellouali M, Latrache H, Zahir H (2021) Role of biofilms in the survival of Legionella pneumophila to sodium chloride treatment. Iranian J Microbiol 13(4):488

    Google Scholar 

Download references

Acknowledgements

There is no acknowledgment for the present study.

Funding

There is no funding to declare.

Author information

Authors and Affiliations

Authors

Contributions

M conceptualized the study. SH, NA provided resources. SH, FM performed the experiments. NA and FM performed statistical analysis. SM, NM, MTM, and SH wrote the original draft. SM, SH, NA, FM revised and edited the manuscript.

Corresponding author

Correspondence to Shiva Mirkalantari.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayatimehr, S., Mirkalantari, S., Amirmozafari, N. et al. Virulence Genes and Biofilm Formation Among Legionella pneumophila Isolates Collected from Hospital Water Sources. Curr Microbiol 81, 141 (2024). https://doi.org/10.1007/s00284-023-03609-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03609-1

Keywords

Navigation