Skip to main content

Advertisement

Log in

Aptitude of Uropathogenic Escherichia coli in Renal Transplant Recipients: A Comprehensive Review on Characteristic Features, and Production of Extended Spectrum β-Lactamase

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Urinary tract infection is the most common infection in almost half of the renal transplant patients. The development of UTI in these patients may progress to bacteremia, acute T cell-mediated rejection, impaired allograft function, or allograft loss, along with the increased risk of hospitalization and death. Among various pathogens implicated, Uropathogenic E. coli (UPEC), especially sequence type 131 (ST131), is the most virulent and multidrug-resistant pathogen. High antimicrobial resistance to most β-lactam antibiotics, mediated by extended spectrum β-lactamases (ESBLs) produced by UPEC, is a challenge in the clinical management of UTIs in kidney transplant recipients. Indeed, multidrug resistance to β-lactam antibiotics is a direct consequence of ESBL production. Resistance to other antibiotics such as aminoglycosides, fluoroquinolones, and trimethoprim-sulphamethoxazole has also been reported in ESBLs-producing UPEC, which reduces the therapeutic options, rising healthcare-associated costs and subsequently leads to renal failure or even graft loss. In this review, we aimed to discuss the post-transplant risk factors of UTI, UPEC virulence factors (VF), and the related factors including quorum sensing, and stress resistance genes. Furthermore, we searched for the current treatment strategies and some of the alternate approaches proposed as therapeutic options that may affirm the treatment of ESBL-producing UPEC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

Consent for Publication

All authors have made substantial contributions. All authors have approved the final article and have contributed sufficiently to the project to be included as authors.

Declaration of Deposition in Repositories

Not applicable.

References

  1. Purnell TS, Auguste P, Crews DC, Lamprea-Montealegre J, Olufade T, Greer R, Ephraim P, Sheu J, Kostecki D, Powe NR (2013) Comparison of life participation activities among adults treated by hemodialysis, peritoneal dialysis, and kidney transplantation: a systematic review. AJKD 62:953–973. https://doi.org/10.1053/j.ajkd.2013.03.022

    Article  PubMed  Google Scholar 

  2. Moghaddam AS, Arfaatabar M, Afshari JT, Shakerimoghaddam A, Mohammadzamani Z, Khaledi A (2019) Prevalence and antimicrobial resistance of bacterial uropathogens isolated from Iranian kidney transplant recipients: a systematic review and meta-analysis. Iran J Public Health 48:2165

    Google Scholar 

  3. Chuang P, Parikh CR, Langone A (2005) Urinary tract infections after renal transplantation: a retrospective review at two US transplant centers. Clin Transplant 19:230–235. https://doi.org/10.1111/j.1399-0012.2005.00327.x

    Article  PubMed  Google Scholar 

  4. Säemann M, Hörl W (2008) Urinary tract infection in renal transplant recipients. Eur J Clin Investig 38:58–65. https://doi.org/10.1111/j.1365-2362.2008.02014.x

    Article  Google Scholar 

  5. Pelle G, Vimont S, Levy P, Hertig A, Ouali N, Chassin C, Arlet G, Rondeau E, Vandewalle A (2007) Acute pyelonephritis represents a risk factor impairing long-term kidney graft function. Am J Transplant 7:899–907. https://doi.org/10.1111/j.1600-6143.2006.01700.x

    Article  CAS  PubMed  Google Scholar 

  6. Halaji M, Shahidi S, Atapour A, Ataei B, Feizi A, Havaei SA (2020) Characterization of extended-spectrum β-lactamase-producing uropathogenic Escherichia coli among Iranian kidney transplant patients. Infect Drug Resist 13:1429. https://doi.org/10.2147/IDR.S248572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Singh J, de Jesus M, Cooper L, Pozzerle J, Antony SJ, Knight B (2019) Clinical features and outcomes in ESBL-producing microorganisms in renal transplant recipients with urinary tract infections. Int J Infect. https://doi.org/10.5812/iji.96442

    Article  Google Scholar 

  8. Gołębiewska J, Dębska-Ślizień A, Komarnicka J, Samet A, Rutkowski B (2011) Urinary tract infections in renal transplant recipients. Transplant Proc. https://doi.org/10.1016/j.transproceed.2011.07.010

    Article  PubMed  Google Scholar 

  9. Merçon M, Regua-Mangia A, Teixeira L, Irino K, Tuboi S, Goncalves R, Santoro-Lopes G (2010) Urinary tract infections in renal transplant recipients: virulence traits of uropathogenic Escherichia coli. Transplant Proc. https://doi.org/10.1016/j.transproceed.2010.01.04910

    Article  PubMed  Google Scholar 

  10. Nampoory M, Johny KV, Costandy JN, Nair MP, Said T, Homoud H, Al-Muzairai I, Samhan M, Al-Moussawi M (2003) Infection related renal impairment: a major cause of acute allograft dysfunction. Exp Clin Transplant 1:60–64

    PubMed  Google Scholar 

  11. Fiorentino M, Pesce F, Schena A, Simone S, Castellano G, Gesualdo L (2019) Updates on urinary tract infections in kidney transplantation. J Nephrol. https://doi.org/10.1007/s40620-019-00585-3

    Article  PubMed  Google Scholar 

  12. Claus M, Herro R, Wolf D, Buscher K, Rudloff S, Huynh-Do U, Burkly L, Croft M, Sidler D (2018) The TWEAK/Fn14 pathway is required for calcineurin inhibitor toxicity of the kidneys. Am J Transplant 18:1636–1645. https://doi.org/10.1111/ajt.14632

    Article  CAS  PubMed  Google Scholar 

  13. Odler B, Deak AT, Pregartner G, Riedl R, Bozic J, Trummer C, Prenner A, Söllinger L, Krall M, Höflechner L (2021) Hypomagnesemia is a risk factor for infections after kidney transplantation: a retrospective cohort analysis. Nutrients 13:1296. https://doi.org/10.3390/nu13041296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Iqbal Z, Ortiz JF, Khan SA, Salem A, Jahan N (2020) How to treat asymptomatic and symptomatic urinary tract infections in the kidney transplant recipients? Cureus 12:e9608. https://doi.org/10.7759/cureus.9608

    Article  PubMed  PubMed Central  Google Scholar 

  15. Brown PD (2002) Urinary tract infections in renal transplant recipients. Curr Infect Dis Rep 4:525–528. https://doi.org/10.1007/s11908-002-0040-0

    Article  PubMed  Google Scholar 

  16. Parasuraman R, Julian K, Practice AIDCo, (2013) Urinary tract infections in solid organ transplantation. Am J Transplant 13:327–336. https://doi.org/10.1111/ajt.12124

    Article  CAS  PubMed  Google Scholar 

  17. Zhao R, Shi J, Shen Y, Li Y, Han Q, Zhang X, Gu G, Xu J (2015) Phylogenetic distribution of virulence genes among ESBL-producing uropathogenic Escherichia coli isolated from long-term hospitalized patients. J Clin Diagn Res 9:DC01. https://doi.org/10.7860/JCDR/2015/13234.6157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Apodaca G (2004) The uroepithelium: not just a passive barrier. Traffic 5:117–128. https://doi.org/10.1046/j.1600-0854.2003.00156.x

    Article  CAS  PubMed  Google Scholar 

  19. Sivick KE, Mobley HL (2010) Waging war against uropathogenic Escherichia coli: winning back the urinary tract. Infect Immun 78:568. https://doi.org/10.1128/IAI.01000-09

    Article  CAS  PubMed  Google Scholar 

  20. Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ (2015) Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol 13:269–284. https://doi.org/10.1038/nrmicro3432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hannan TJ, Totsika M, Mansfield KJ, Moore KH, Schembri MA, Hultgren SJ (2012) Host-pathogen checkpoints and population bottlenecks in persistent and intracellular uropathogenic Escherichia coli bladder infection. FEMS Microbiol Rev 36(3):616–648. https://doi.org/10.1111/j.1574-6976.2012.00339.x

    Article  CAS  PubMed  Google Scholar 

  22. Rice J, Peng T, Kuo YF, Pendyala S, Simmons L, Boughton J, Ishihara K, Nowicki S, Nowicki B (2006) Renal allograft injury is associated with urinary tract infection caused by Escherichia coli bearing adherence factors. Am J Transplant 6(10):2375–2383. https://doi.org/10.1111/j.1600-6143.2006.01471.x

    Article  CAS  PubMed  Google Scholar 

  23. Eberly AR, Floyd KA, Beebout CJ, Colling SJ, Fitzgerald MJ, Stratton CW, Schmitz JE, Hadjifrangiskou M (2017) Biofilm formation by uropathogenic Escherichia coli is favored under oxygen conditions that mimic the bladder environment. Int J Mol Sci 18:2077. https://doi.org/10.3390/ijms18102077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fattahi S, Kafil HS, Nahai MR, Asgharzadeh M, Nori R, Aghazadeh M (2015) Relationship of biofilm formation and different virulence genes in uropathogenic Escherichia coli isolates from Northwest Iran. GMS Hyg Infect Control 10:Doc11

    PubMed  PubMed Central  Google Scholar 

  25. Delcaru C, Alexandru I, Podgoreanu P, Grosu M, Stavropoulos E, Chifiriuc MC, Lazar V (2016) Microbial biofilms in urinary tract infections and prostatitis: etiology, pathogenicity, and combating strategies. Pathogens 5:65. https://doi.org/10.3390/pathogens5040065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zamani H, Salehzadeh A (2018) Biofilm formation in uropathogenic Escherichia coli: association with adhesion factor genes. Turk J Med Sci 48:162–167. https://doi.org/10.3906/sag-1707-3

    Article  CAS  PubMed  Google Scholar 

  27. Justice SS, Li B, Downey JS, Dabdoub SM, Brockson ME, Probst GD, Ray WC, Goodman SD (2012) Aberrant community architecture and attenuated persistence of uropathogenic Escherichia coli in the absence of individual IHF subunits. PLoS ONE 7:e48349. https://doi.org/10.1371/journal.pone.0048349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Floyd KA, Mitchell CA, Eberly AR, Colling SJ, Zhang EW, DePas W, Chapman MR, Conover M, Rogers BR, Hultgren SJ (2016) The UbiI (VisC) aerobic ubiquinone synthase is required for expression of type 1 pili, biofilm formation, and pathogenesis in uropathogenic Escherichia coli. J Bacteriol Mycol 198:2662. https://doi.org/10.1128/JB.00030-16

    Article  CAS  Google Scholar 

  29. Tapia G, Yee J (2006) Biofilm: its relevance in kidney disease. Adv Chronic Kidney Dis 13:215–224. https://doi.org/10.1053/j.ackd.2006.04.002

    Article  PubMed  Google Scholar 

  30. Purbowati R, Utami S, Listyawati A (2019) Biofilm formation and attachment factors existence in urinary tract infection caused by Escherichia coli. Available at SSRN 3487267. https://doi.org/10.2139/ssrn.3487267

  31. Wood TK (2009) Insights on Escherichia coli biofilm formation and inhibition from whole-transcriptome profiling. Environ Microbiol 11:1–15. https://doi.org/10.1111/j.1462-2920.2008.01768.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sharma G, Sharma S, Sharma P, Chandola D, Dang S, Gupta S, Gabrani R (2016) Escherichia coli biofilm: development and therapeutic strategies. J Appl Microbiol 121(2):309–319. https://doi.org/10.1111/jam.13078

    Article  CAS  PubMed  Google Scholar 

  33. Heras B, Totsika M, Peters KM, Paxman JJ, Gee CL, Jarrott RJ, Perugini MA, Whitten AE, Schembri MA (2014) The antigen 43 structure reveals a molecular Velcro-like mechanism of autotransporter-mediated bacterial clumping. Proc Natl Acad Sci USA 111(1):457–462. https://doi.org/10.1073/pnas.1311592111

    Article  CAS  PubMed  Google Scholar 

  34. Laarmann S, Schmidt MA (2003) The Escherichia coli AIDA autotransporter adhesin recognizes an integral membrane glycoprotein as receptor. Microbiology 149(7):1871–1882. https://doi.org/10.1099/mic.0.26264-0

    Article  CAS  PubMed  Google Scholar 

  35. Charbonneau M-È, Mourez M (2008) The Escherichia coli AIDA-I autotransporter undergoes cytoplasmic glycosylation independently of export. Microbiology 159:537–544. https://doi.org/10.1016/j.resmic.2008.06.009

    Article  CAS  Google Scholar 

  36. Vogeleer P, Tremblay YD, Mafu AA, Jacques M, Harel J (2014) Life on the outside: role of biofilms in environmental persistence of Shiga-toxin producing Escherichia coli. Front Microbiol 5:317. https://doi.org/10.3389/fmicb.2014.00317

    Article  PubMed  PubMed Central  Google Scholar 

  37. Abisado RG, Benomar S, Klaus JR, Dandekar AA, Chandler JR (2018) Bacterial quorum sensing and microbial community interactions. MBio. https://doi.org/10.1128/mBio.02331-17

    Article  PubMed  PubMed Central  Google Scholar 

  38. Papenfort K, Bassler BL (2016) Quorum sensing signal-response systems in Gram-negative bacteria. Nat Rev Microbiol 14:576. https://doi.org/10.1038/nrmicro.2016.89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Camilli A, Bassler BL (2006) Bacterial small-molecule signaling pathways. Science 311:1113–1116. https://doi.org/10.1126/science.1121357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Barrios AFG, Zuo R, Hashimoto Y, Yang L, Bentley WE, Wood TK (2006) Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). J Bacteriol 188:305. https://doi.org/10.1126/science.1121357

    Article  CAS  Google Scholar 

  41. Olsen I (2015) Biofilm-specific antibiotic tolerance and resistance. Eur J Clin Microbiol Infect Dis 34:877–886. https://doi.org/10.1007/s10096-015-2323-z

    Article  CAS  PubMed  Google Scholar 

  42. Anas A, Tanzeel SSM, Ahmad U, Ali A (2017) Increasing incidence of ESBL type resistance among urinary tract infecting Escherichia coli in New Delhi, India. IJOPAAR 1:48–61

    Google Scholar 

  43. Bodro M, Sanclemente G, Lipperheide I, Allali M, Marco F, Bosch J, Cofan F, Ricart M, Esforzado N, Oppenheimer F (2015) Impact of antibiotic resistance on the development of recurrent and relapsing symptomatic urinary tract infection in kidney recipients. Am J Transplant 15:1021–1027. https://doi.org/10.1111/ajt.13075

    Article  CAS  PubMed  Google Scholar 

  44. Yuan X, Liu T, Di Wu QW (2018) Epidemiology, susceptibility, and risk factors for acquisition of MDR/XDR Gram-negative bacteria among kidney transplant recipients with urinary tract infections. Infect Drug Resist 11:707. https://doi.org/10.2147/IDR.S163979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kot B (2019) Antibiotic resistance among uropathogenic Escherichia coli. Pol J Microbiol 68:403. https://doi.org/10.2147/IDR.S163979

    Article  PubMed  PubMed Central  Google Scholar 

  46. Alevizakos M, Nasioudis D, Mylonakis E (2017) Urinary tract infections caused by ESBL-producing Enterobacteriaceae in renal transplant recipients: a systematic review and meta-analysis. Transplant Infect Dis 19:e12759. https://doi.org/10.1111/tid.12759

    Article  Google Scholar 

  47. Khah AN, Hakemi-Vala M, Samavat S, Nasiri MJ (2020) Prevalence, serotyping and drug susceptibility patterns of Escherichia coli isolates from kidney transplanted patients with urinary tract infections. World J Biol Chem 11:112. https://doi.org/10.4331/wjbc.v11.i3.112

    Article  PubMed  Google Scholar 

  48. Mugnaioli C, Luzzaro F, De Luca F, Brigante G, Perilli M, Amicosante G, Stefani S, Toniolo A, Rossolini GM (2006) CTX-M-type extended-spectrum β-lactamases in Italy: molecular epidemiology of an emerging countrywide problem. Antimicrob Agents Chemother 50:2700–2706. https://doi.org/10.1128/AAC.00068-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Aydın S, Patil A, Desai M, Simforoosh N (2020) Five compelling UTI questions after kidney transplant. World J Urol 38:2733–2742. https://doi.org/10.1007/s00345-020-03173-4

    Article  PubMed  Google Scholar 

  50. Pinheiro H, Mituiassu A, Carminatti M, Braga A, Bastos M (2010) Urinary tract infection caused by extended-spectrum beta-lactamase-producing bacteria in kidney transplant patients. Transplant Proc. https://doi.org/10.1016/j.transproceed.2010.02.002

    Article  PubMed  Google Scholar 

  51. Lim J-H, Cho J-H, Lee J-H, Park Y-J, Jin S, Park G-Y, Kim J-S, Kang Y-J, Kwon O, Choi J-Y (2013) Risk factors for recurrent urinary tract infection in kidney transplant recipients. I Transplant Proc 4:1584–1589. https://doi.org/10.1016/j.transproceed.2012.12.011

    Article  Google Scholar 

  52. Wu S-W, Liu K-S, Lin C-K, Hung T-W, Tsai H-C, Chang H-R, Lian J-D (2013) Community-acquired urinary tract infection in kidney transplantation: risk factors for bacteremia and recurrent infection. JFMA 112:138–143. https://doi.org/10.1016/j.jfma.2012.01.010

    Article  Google Scholar 

  53. Rodríguez-Baño J, Picón E, Gijón P, Hernández JR, Cisneros JM, Pena C, Almela M, Almirante B, Grill F, Colomina J (2010) Risk factors and prognosis of nosocomial bloodstream infections caused by extended-spectrum-β-lactamase-producing Escherichia coli. J Clin Microbiol 48:1726–1731. https://doi.org/10.1128/JCM.02353-09

    Article  PubMed  PubMed Central  Google Scholar 

  54. Espinar MJ, Miranda IM, Costa-de-Oliveira S, Rocha R, Rodrigues AG, Pina-Vaz C (2015) Urinary tract infections in kidney transplant patients due to Escherichia coli and Klebsiella pneumoniae-producing extended-spectrum β-lactamases: risk factors and molecular epidemiology. PLoS ONE 10:e0134737. https://doi.org/10.1371/journal.pone.0134737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Halaji M, Shahidi S, Ataei B, Atapour A, Feizi A, Havaei SA (2021) Molecular epidemiology of blaCTX-M gene-producing uropathogenic Escherichia coli among Iranian kidney transplant patients: clonal dissemination of CC131 and CC10. Ann Clin Microbiol Antimicrob 20:1–11. https://doi.org/10.1186/s12941-021-00470-7

    Article  CAS  Google Scholar 

  56. Amadu DO, Nwabuisi C, Usman Y, Mustapha J, Abdullahi IN, Popoola A (2019) Biofilm and extended spectrum beta lactamase production amongst uropathogenic Escherichia coli isolates at the University of Ilorin Teaching Hospital, Nigeria. IJML 6:241–250. https://doi.org/10.18502/ijml.v6i4.1999

    Article  CAS  Google Scholar 

  57. Sadeghi A, Halaji M, Fayyazi A, Havaei SA (2020) Characterization of plasmid-mediated quinolone resistance and serogroup distributions of uropathogenic Escherichia coli among Iranian kidney transplant patients. Biomed Res Int. https://doi.org/10.1155/2020/2850183

    Article  PubMed  PubMed Central  Google Scholar 

  58. Clermont O, Christenson JK, Denamur E, Gordon DM (2013) The Clermont Escherichia coli phylo-typing method revisited: improvement of specificity and detection of new phylo-groups. Environ Microbiol Rep 5:58–65. https://doi.org/10.1111/1758-2229.12019

    Article  CAS  PubMed  Google Scholar 

  59. Katongole P, Kisawuzi DB, Bbosa HK, Kateete DP, Najjuka CF (2019) Phylogenetic groups and antimicrobial susceptibility patterns of uropathogenic Escherichia coli clinical isolates from patients at Mulago National Referral Hospital, Kampala, Uganda. F1000Research 8:1828. https://doi.org/10.12688/f1000research.20930.1

    Article  Google Scholar 

  60. Forde BM, Roberts LW, Phan M-D, Peters KM, Fleming BA, Russell CW, Lenherr SM, Myers JB, Barker AP, Fisher MA (2019) Population dynamics of an Escherichia coli ST131 lineage during recurrent urinary tract infection. Nat Commun 10:1–10. https://doi.org/10.1038/s41467-019-11571-5

    Article  CAS  Google Scholar 

  61. Cristea VC, Gheorghe I, Czobor Barbu I, Popa LI, Ispas B, Grigore GA, Bucatariu I, Popa GL, Angelescu M-C, Velican A (2019) Snapshot of phylogenetic groups, virulence, and resistance markers in Escherichia coli uropathogenic strains isolated from outpatients with urinary tract infections in Bucharest, Romania. Biomed Res Int 2019:8. https://doi.org/10.1155/2019/5712371

    Article  CAS  Google Scholar 

  62. Rodriguez-Mañas L (2020) Urinary tract infections in the elderly: a review of disease characteristics and current treatment options. Drugs Context. https://doi.org/10.7573/dic.2020-4-1364

    Article  PubMed  PubMed Central  Google Scholar 

  63. Barber AE, Norton JP, Spivak AM, Mulvey MA (2013) Urinary tract infections: current and emerging management strategies. Clin Infect Dis 57:719–724

    Article  PubMed  PubMed Central  Google Scholar 

  64. Mohammadzadeh M, Tavakoli M, Yaslianifard S, Asadi E, Golmohammadi R, Mirnejad R (2019) Genetic diversity and antibiotic susceptibility of uropathogenic Escherichia coli isolates from kidney transplant recipients. Infect Drug Resist 12:1795–1803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hadifar S, Moghoofei M, Nematollahi S, Ramazanzadeh R, Sedighi M, Salehi-Abargouei A, Miri A (2017) Epidemiology of multidrug resistant uropathogenic Escherichia coli in Iran: a systematic review and meta-analysis. Jpn J Infect Dis 70:19–25. https://doi.org/10.7883/yoken.JJID.2015.652

    Article  PubMed  Google Scholar 

  66. Ten Doesschate T, van Werkhoven H, Meijvis S, Stalenhoef J, van Zuilen A, de Vries A, Bonten M (2019) Fosfomycin-trometamol for urinary tract infections in kidney transplant recipients. Transplantation 103:1272–1276. https://doi.org/10.1097/TP.0000000000002427

    Article  CAS  PubMed  Google Scholar 

  67. López-Medrano F, Silva JT, Fernández-Ruiz M, Vidal E, Origüen J, Calvo-Cano A, Luna-Huerta E, Merino E, Hernández D, Jironda-Gallegos C (2020) Oral fosfomycin for the treatment of lower urinary tract infections among kidney transplant recipients—results of a Spanish multicenter cohort. Am J Transplant 20:451–462. https://doi.org/10.1111/ajt.15614

    Article  CAS  PubMed  Google Scholar 

  68. Greene SE, Pinkner JS, Chorell E, Dodson KW, Shaffer CL, Conover MS, Livny J, Hadjifrangiskou M, Almqvist F, Hultgren SJ (2014) Pilicide ec240 disrupts virulence circuits in uropathogenic Escherichia coli. MBio 5:e02038-e12014. https://doi.org/10.1128/mBio.02038-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. George J, Fels Saju NG, Jose A (2019) Biofilms: a silent threat to human life. Int J Pharm Sci Rev Res 54:121–124

    CAS  Google Scholar 

  70. Guay DR (2009) Cranberry and urinary tract infections. Drugs 69:775–807

    Article  CAS  PubMed  Google Scholar 

  71. Mantzorou M, Giaginis C (2018) Cranberry consumption against urinary tract infections: clinical state-of-the-art and future perspectives. Curr Pharm Biotechnol 19:1049–1063. https://doi.org/10.2174/1389201020666181206104129

    Article  CAS  PubMed  Google Scholar 

  72. González de Llano D, Moreno-Arribas M, Bartolomé B (2020) Cranberry polyphenols and prevention against urinary tract infections: relevant considerations. Molecules 25:3523. https://doi.org/10.3390/molecules25153523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Reid G (2017) The development of probiotics for women’s health. Can J Microbiol 63:269–277. https://doi.org/10.1139/cjm-2016-0733

    Article  CAS  PubMed  Google Scholar 

  74. Beerepoot M, Geerlings S (2016) Non-antibiotic prophylaxis for urinary tract infections. Pathogens 5:36. https://doi.org/10.3390/pathogens5020036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sharma G, Dang S, Kalia M, Gabrani R (2020) Synergistic antibacterial and anti-biofilm activity of nisin like bacteriocin with curcumin and cinnamaldehyde against ESBL and MBL producing clinical strains. Biofouling 36:710–724. https://doi.org/10.1080/08927014.2020.1804553

    Article  CAS  PubMed  Google Scholar 

  76. Montorsi F, Gandaglia G, Salonia A, Briganti A, Mirone V (2016) Effectiveness of a combination of cranberries, Lactobacillus rhamnosus, and vitamin C for the management of recurrent urinary tract infections in women: results of a pilot study. Eur Urol 70:912–915. https://doi.org/10.1016/j.eururo.2016.05.042

    Article  PubMed  Google Scholar 

  77. Vazquez NM, Mariani F, Torres PS, Moreno S, Galván EM (2020) Cell death and biomass reduction in biofilms of multidrug resistant extended spectrum β-lactamase-producing uropathogenic Escherichia coli isolates by 1, 8-cineole. PLoS ONE 15:e0241978. https://doi.org/10.1371/journal.pone.0241978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Nobre LS, Seixas JD, Romão CC, Saraiva LM (2007) Antimicrobial action of carbon monoxide-releasing compounds. Antimicrob Agents Chemother 51:4303–4307. https://doi.org/10.1128/AAC.00802-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bang CS, Kruse R, Johansson K, Persson K (2016) Carbon monoxide releasing molecule-2 (CORM-2) inhibits growth of multidrug-resistant uropathogenic Escherichia coli in biofilm and following host cell colonization. BMC Microbiol 16:1–10. https://doi.org/10.1186/s12866-016-0678-7

    Article  CAS  Google Scholar 

  80. Tavares AFN, Teixeira M, Romão CC, Seixas JD, Nobre LS, Saraiva LM (2011) Reactive oxygen species mediate bactericidal killing elicited by carbon monoxide-releasing molecules. JBC 286:26708–26717. https://doi.org/10.1074/jbc.M111.255752

    Article  CAS  Google Scholar 

  81. Nicolle LE (2014) Urinary tract infections in special populations: diabetes, renal transplant, HIV infection, and spinal cord injury. Infect Dis Clin 28:91–104. https://doi.org/10.1016/j.idc.2013.09.006

    Article  Google Scholar 

  82. Sacristán PG, Marfil AP, Moratalla JO, de Gracia GC, Fuentes CR, Barbosa YC, Jiménez BG, de Teresa AJ, Martin FB, Ortega AO (2013) Predictive factors of infection in the first year after kidney transplantation. Transplant Proc 10:3620–3623. https://doi.org/10.1016/j.transproceed.2013.11.009

    Article  CAS  Google Scholar 

  83. Ooms L, Ijzermans J, Betjes M, Vos M, Terkivatan T (2017) Urinary tract infections after kidney transplantation: a risk factor analysis of 417 patients. Ann Transplant 22:402–408. https://doi.org/10.12659/AOT.903249

    Article  CAS  PubMed  Google Scholar 

  84. Sarowska J, Futoma-Koloch B, Jama-Kmiecik A, Frej-Madrzak M, Ksiazczyk M, Bugla-Ploskonska G, Choroszy-Krol I (2019) Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources: recent reports. Gut Pathog 11:1–16. https://doi.org/10.1186/s13099-019-0290-0

    Article  Google Scholar 

  85. Bien J, Sokolova O, Bozko P (2012) Role of uropathogenic Escherichia coli virulence factors in development of urinary tract infection and kidney damage. Int J Nephrol. https://doi.org/10.1155/2012/681473

    Article  PubMed  PubMed Central  Google Scholar 

  86. Jahandeh N, Ranjbar R, Behzadi P, Behzadi E (2015) Uropathogenic Escherichia coli virulence genes: invaluable approaches for designing DNA microarray probes. Cent Eur J Urol 68:452. https://doi.org/10.5173/ceju.2015.625

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank staff of Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran for their meticulous support.

Funding

No funds were obtained from any source.

Author information

Authors and Affiliations

Authors

Contributions

Conception of the article: MKN and AH. Literature search: MKN, AH and SRS. Data analysis: MKN, AH, MZN and AH. Draft revision of the work: AH and MKN.

Corresponding author

Correspondence to Alka Hasani.

Ethics declarations

Conflict of interest

No conflict of interest exists.

Ethical Approval

Not applicable.

Research involving Human and Animal Rights

The manuscript does not contain any data or biological material and no human participants were involved in this manuscript. The manuscript does not contain any data or biological material and no animal was used for writing this manuscript.

Utilization of Plants, Algae, Fungi

None.

Informed Consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nejad, M.K., Hasani, A., Soofiyani, S.R. et al. Aptitude of Uropathogenic Escherichia coli in Renal Transplant Recipients: A Comprehensive Review on Characteristic Features, and Production of Extended Spectrum β-Lactamase. Curr Microbiol 80, 382 (2023). https://doi.org/10.1007/s00284-023-03476-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03476-w

Navigation