Skip to main content

Advertisement

Log in

Metagenome Analysis of Speleothem Microbiome from Subterranean Cave Reveals Insight into Community Structure, Metabolic Potential, and BGCs Diversity

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The Borra caves, the second largest subterranean karst cave ecosystem in the Indian sub-continent, are located at the Ananthagiri hills of Araku Valley in the Alluri district of Andhra Pradesh, India. The present investigation applied a shotgun metagenomic approach to gain insights into the microbial community structure, metabolic potential, and biosynthetic gene cluster (BGC) diversity of the microbes colonizing the surface of the speleothems from the aphotic zone of Borra caves. The taxonomic analysis of the metagenome data illustrated that the speleothem-colonizing core microbial community was dominated mainly by Alpha-, Beta-, and Gamma-Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes. The key energy metabolic pathways analysis provides strong evidence of chemolithoautotrophic and chemoheterotrophic modes of nutrition in the speleothem-colonizing microbial community. Metagenome data suggests that sulfur reducers and sulfur-disproportionating microbes might play a vital role in energy generation in this ecosystem. Our metagenome data also suggest that the dissimilatory nitrifiers and nitrifying denitrifiers might play an essential role in conserving nitrogen pools in the ecosystem. Furthermore, metagenome-wide BGCs mining retrieved 451 putative BGCs; NRPS was the most abundant (24%). Phylogenetic analysis of the C domain of NRPS showed that sequences were distributed across all six function categories of the known C domain, including several novel subclades. For example, a novel subclade had been recovered within the LCL domain clade as a sister subclade of immunosuppressant cyclosporin encoding C domain sequences. Our result suggested that subterranean cave microbiomes might be a potential reservoir of novel microbial metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Barton HA, Northup DE (2007) Geomicrobiology in cave environments: past, current and future perspectives. J Cave Karst Stud 69:163–178

    Google Scholar 

  2. de Paula CCP, Bichuette ME, Seleghim MHR (2020) Nutrient availability in tropical caves influences the dynamics of microbial biomass. Microbiologyopen 9:e1044. https://doi.org/10.1002/mbo3.1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Simon KS, Benfield EF, Macko SA (2003) Food web structure and the role of epilithic biofilms in cave streams. Ecology 84:2395–2406. https://doi.org/10.1890/02-334

    Article  Google Scholar 

  4. Northup DE, Lavoie KH (2001) Geomicrobiology of caves: a review. Geomicrobiol J 18:199–222. https://doi.org/10.1080/01490450152467750

    Article  CAS  Google Scholar 

  5. Barton HA, Giarrizzo JG, Suarez P et al (2014) Microbial diversity in a Venezuelan orthoquartzite cave is dominated by the Chloroflexi (Class Ktedonobacterales) and Thaumarchaeota Group I.1c. Front Microbiol 5:615. https://doi.org/10.3389/fmicb.2014.00615

    Article  PubMed  PubMed Central  Google Scholar 

  6. Jones DS, Tobler DJ, Schaperdoth I et al (2010) Community structure of subsurface biofilms in the thermal sulfidic caves of Acquasanta Terme, Italy. Appl Environ Microbiol 76:5902–5910. https://doi.org/10.1128/AEM.00647-10

    Article  CAS  PubMed Central  Google Scholar 

  7. Dhami NK, Mukherjee A, Watkin ELJ (2018) Microbial diversity and mineralogical-mechanical properties of calcitic cave speleothems in natural and in vitro biomineralization conditions. Front Microbiol 9:40. https://doi.org/10.3389/fmicb.2018.00040

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ortiz M, Neilson JW, Nelson WM et al (2013) Profiling bacterial diversity and taxonomic composition on speleothem surfaces in Kartchner Caverns, AZ. Microb Ecol 65:371–383. https://doi.org/10.1007/s00248-012-0143-6

    Article  PubMed  Google Scholar 

  9. Ortiz M, Legatzki A, Neilson JW et al (2014) Making a living while starving in the dark: metagenomic insights into the energy dynamics of a carbonate cave. ISME J 8:478–491. https://doi.org/10.1038/ismej.2013.159

    Article  CAS  PubMed  Google Scholar 

  10. D’Auria G, Artacho A, Rojas RA et al (2018) Metagenomics of bacterial diversity in Villa Luz caves with sulfur water springs. Genes 9:55. https://doi.org/10.3390/genes9010055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Park S, Cho Y-J, Jung D et al (2020) Microbial diversity in moonmilk of Baeg-nyong Cave, Korean CZO. Front Microbiol 11:613. https://doi.org/10.3389/fmicb.2020.00613

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zepeda Mendoza ML, Lundberg J, Ivarsson M et al (2016) Metagenomic analysis from the interior of a speleothem in Tjuv-Ante’s Cave, Northern Sweden. PLoS ONE 11:e0151577. https://doi.org/10.1371/journal.pone.0151577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jones DS, Albrecht HL, Dawson KS et al (2012) Community genomic analysis of an extremely acidophilic sulfur-oxidizing biofilm. ISME J 6:158–170. https://doi.org/10.1038/ismej.2011.75

    Article  CAS  PubMed  Google Scholar 

  14. Wiseschart A, Mhuantong W, Tangphatsornruang S et al (2019) Shotgun metagenomic sequencing from Manao-Pee cave, Thailand, reveals insight into the microbial community structure and its metabolic potential. BMC Microbiol 19:144. https://doi.org/10.1186/s12866-019-1521-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tomczyk-Żak K, Zielenkiewicz U (2016) Microbial diversity in caves. Geomicrobiol J 33:20–38. https://doi.org/10.1080/01490451.2014.1003341

    Article  Google Scholar 

  16. Hershey OS, Barton HA (2018) The microbial diversity of caves. In: Moldovan O, Kováč Ľ, Halse S (eds) Cave ecology. Springer, Cham, pp 69–90

    Chapter  Google Scholar 

  17. Rokas A, Mead ME, Steenwyk JL et al (2020) Biosynthetic gene clusters and the evolution of fungal chemodiversity. Nat Prod Rep 37:868–878. https://doi.org/10.1039/C9NP00045C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Medema MH, Kottmann R, Yilmaz P et al (2015) Minimum information about a biosynthetic gene cluster. Nat Chem Biol 11:625–631. https://doi.org/10.1038/nchembio.1890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cimermancic P, Medema MH, Claesen J et al (2014) Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell 158:412–421. https://doi.org/10.1016/j.cell.2014.06.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rangseekaew P, Pathom-Aree W (2019) Cave actinobacteria as producers of bioactive metabolites. Front Microbiol 10:387. https://doi.org/10.3389/fmicb.2019.00387

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zada S, Sajjad W, Rafiq M et al (2022) Cave microbes as a potential source of drugs development in the modern era. Microb Ecol 84:676–687. https://doi.org/10.1007/s00248-021-01889-3

    Article  CAS  PubMed  Google Scholar 

  22. Ghosh S, Kam G, Nijjer M et al (2020) Culture dependent analysis of bacterial diversity in Canada’s Raspberry Rising Cave revealed antimicrobial properties. Int J Speleol 49:43–53. https://doi.org/10.5038/1827-806X.49.1.2291

    Article  Google Scholar 

  23. Ghosh S, Kuisiene N, Cheeptham N (2017) The cave microbiome as a source for drug discovery: reality or pipe dream? Biochem Pharmacol 134:18–34. https://doi.org/10.1016/j.bcp.2016.11.018

    Article  CAS  PubMed  Google Scholar 

  24. Baskar S, Baskar R, Lee N et al (2008) Precipitation of iron in microbial mats of the spring waters of Borra Caves, Vishakapatnam, India: some geomicrobiological aspects. Environ Geol 56:237–243. https://doi.org/10.1007/s00254-007-1159-y

    Article  CAS  Google Scholar 

  25. Baskar S, Baskar R, Thorseth IH et al (2012) Microbially induced iron precipitation associated with a neutrophilic spring at Borra Caves, Vishakhapatnam, India. Astrobiology 12:327–346. https://doi.org/10.1089/ast.2011.0672

    Article  CAS  PubMed  Google Scholar 

  26. Griffin DW, Gray MA, Lyles MB, Northup DE (2014) The transport of nonindigenous microorganisms into caves by human visitation: a case study at Carlsbad Caverns National Park. Geomicrobiol J. https://doi.org/10.1080/01490451.2013.815294

    Article  Google Scholar 

  27. Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890. https://doi.org/10.1093/bioinformatics/bty560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li D, Liu C-M, Luo R et al (2015) MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31:1674–1676. https://doi.org/10.1093/bioinformatics/btv033

    Article  CAS  PubMed  Google Scholar 

  29. Patel RK, Jain M (2012) NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS ONE 7:e30619. https://doi.org/10.1371/journal.pone.0030619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Menzel P, Ng KL, Krogh A (2016) Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun 7:11257. https://doi.org/10.1038/ncomms11257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dong X, Strous M (2019) An integrated pipeline for annotation and visualization of metagenomic contigs. Front Genet 10:999. https://doi.org/10.3389/fgene.2019.00999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kanehisa M (2002) The KEGG databases at GenomeNet. Nucleic Acids Res 30:42–46. https://doi.org/10.1093/nar/30.1.42

    Article  CAS  PubMed  Google Scholar 

  33. Blin K, Shaw S, Kloosterman AM et al (2021) antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 49:W29–W35. https://doi.org/10.1093/nar/gkab335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ziemert N, Podell S, Penn K et al (2012) The natural product domain seeker NaPDoS: a phylogeny based bioinformatic tool to classify secondary metabolite gene diversity. PLoS ONE 7:e34064. https://doi.org/10.1371/journal.pone.0034064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Legatzki A, Ortiz M, Neilson JW et al (2011) Bacterial and archaeal community structure of two adjacent calcite speleothems in Kartchner Caverns, Arizona, USA. Geomicrobiol J 28:99–117. https://doi.org/10.1080/01490451003738465

    Article  Google Scholar 

  36. Baskar S, Baskar R, Kaushik A (2007) Evidences for microbial involvement in the genesis of speleothem carbonates, Borra Caves, Visakhapatnam, India. Curr Sci 92:350–355

    Google Scholar 

  37. Mudgil D, Paul D, Baskar S et al (2022) Cultivable microbial diversity in speleothems using MALDI-TOF spectrometry and DNA sequencing from Krem Soitan, Krem Lawbah, Krem Mawpun, Khasi Hills, Meghalaya, India. Arch Microbiol 204:495. https://doi.org/10.1007/s00203-022-02916-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Berg IA (2011) Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl Environ Microbiol 77:1925–1936. https://doi.org/10.1128/AEM.02473-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Markert S, Arndt C, Felbeck H et al (2007) Physiological proteomics of the uncultured endosymbiont of Riftia pachyptila. Science 315:247–250. https://doi.org/10.1126/science.1132913

    Article  CAS  PubMed  Google Scholar 

  40. Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471. https://doi.org/10.1128/mr.60.2.439-471.1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chistoserdova L (2011) Modularity of methylotrophy, revisited. Environ Microbiol 13:2603–2622. https://doi.org/10.1111/j.1462-2920.2011.02464.x

    Article  CAS  PubMed  Google Scholar 

  42. Lidstrom ME (2006) Aerobic methylotrophic prokaryotes. In: Dworkin M, Falkow S, Rosenberg E et al (eds) The prokaryotes. Springer, New York, pp 618–634

    Chapter  Google Scholar 

  43. Kalyuzhnaya MG, De Marco P, Bowerman S et al (2006) Methyloversatilis universalis gen. nov., sp. nov., a novel taxon within the Betaproteobacteria represented by three methylotrophic isolates. Int J Syst Evol Microbiol 56:2517–2522. https://doi.org/10.1099/ijs.0.64422-0

    Article  CAS  PubMed  Google Scholar 

  44. Chen Y, Wu L, Boden R et al (2009) Life without light: microbial diversity and evidence of sulfur- and ammonium-based chemolithotrophy in Movile Cave. ISME J 3:1093–1104. https://doi.org/10.1038/ismej.2009.57

    Article  CAS  PubMed  Google Scholar 

  45. Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6:441–454. https://doi.org/10.1038/nrmicro1892

    Article  CAS  PubMed  Google Scholar 

  46. Klotz MG, Bryant DA, Hanson TE (2011) The microbial sulfur cycle. Front Microbiol 2:241. https://doi.org/10.3389/fmicb.2011.00241

    Article  PubMed  PubMed Central  Google Scholar 

  47. Finster K (2008) Microbiological disproportionation of inorganic sulfur compounds. J Sulfur Chem 29:281–292. https://doi.org/10.1080/17415990802105770

    Article  CAS  Google Scholar 

  48. Krämer M, Cypionka H (1989) Sulfate formation via ATP sulfurylase in thiosulfate- and sulfite-disproportionating bacteria. Arch Microbiol 151:232–237. https://doi.org/10.1007/BF00413135

    Article  Google Scholar 

  49. Engel AS (2007) Observations on the biodiversity of sulfidic karst habitats. J Cave Karst Stud 69:187–206

    CAS  Google Scholar 

  50. Rütting T, Boeckx P, Müller C, Klemedtsson L (2011) Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle. Biogeosciences 8:1779–1791. https://doi.org/10.5194/bg-8-1779-2011

    Article  CAS  Google Scholar 

  51. Jia M, Winkler MKH, Volcke EIP (2020) Elucidating the competition between heterotrophic denitrification and DNRA using the resource-ratio theory. Environ Sci Technol 54:13953–13962. https://doi.org/10.1021/acs.est.0c01776

    Article  CAS  PubMed  Google Scholar 

  52. Kimble JC, Winter AS, Spilde MN et al (2018) A potential central role of thaumarchaeota in N-Cycling in a semi-arid environment, Fort Stanton Cave, Snowy River passage, New Mexico, USA. FEMS Microbiol Ecol 94:fiy173. https://doi.org/10.1093/femsec/fiy173

    Article  CAS  PubMed Central  Google Scholar 

  53. Zhu X, Burger M, Doane TA, Horwath WR (2013) Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability. Proc Natl Acad Sci 110:6328–6333. https://doi.org/10.1073/pnas.1219993110

    Article  PubMed  PubMed Central  Google Scholar 

  54. Shaw LJ, Nicol GW, Smith Z et al (2006) Nitrosospira spp. can produce nitrous oxide via a nitrifier denitrification pathway. Environ Microbiol 8:214–222. https://doi.org/10.1111/j.1462-2920.2005.00882.x

    Article  CAS  PubMed  Google Scholar 

  55. Quince C, Walker AW, Simpson JT et al (2017) Shotgun metagenomics, from sampling to analysis. Nat Biotechnol 35:833–844. https://doi.org/10.1038/nbt.3935

    Article  CAS  PubMed  Google Scholar 

  56. Salazar-Hamm PS, Hathaway JJM, Winter AS et al (2022) Great diversity of KS α sequences from bat-associated microbiota suggests novel sources of uncharacterized natural products. FEMS Microb 3:xtac012. https://doi.org/10.1093/femsmc/xtac012

    Article  Google Scholar 

  57. Hug J, Bader C, Remškar M et al (2018) Concepts and methods to access novel antibiotics from actinomycetes. Antibiotics 7:44. https://doi.org/10.3390/antibiotics7020044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Covington BC, Spraggins JM, Ynigez-Gutierrez AE et al (2018) Response of secondary metabolism of hypogean actinobacterial genera to chemical and biological stimuli. Appl Environ Microbiol. https://doi.org/10.1128/AEM.01125-18

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ren H, Wang B, Zhao H (2017) Breaking the silence: new strategies for discovering novel natural products. Curr Opin Biotechnol 48:21–27. https://doi.org/10.1016/j.copbio.2017.02.008

    Article  CAS  PubMed  Google Scholar 

  60. Gosse JT, Ghosh S, Sproule A et al (2019) Whole genome sequencing and metabolomic study of cave Streptomyces isolates ICC1 and ICC4. Front Microbiol 10:1020. https://doi.org/10.3389/fmicb.2019.01020

    Article  PubMed  PubMed Central  Google Scholar 

  61. Cheeptham N, Sadoway T, Rule D et al (2013) Cure from the cave: volcanic cave actinomycetes and their potential in drug discovery. Int J Speleol 42:35–47. https://doi.org/10.5038/1827-806X.42.1.5

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by GITAM: Research Seed Grants (F. No: 2021/0003) awarded to BS. We want to acknowledge the Andhra Pradesh State Tourism Department for allowing BS to collect the samples from Borra caves.

Author information

Authors and Affiliations

Authors

Contributions

BS: original concept, sampling, DNA work, data analysis, drafting, and editing manuscript; SS: data analysis, drafting, and editing manuscript; RB: data analysis, drafting, and editing manuscript.

Corresponding author

Correspondence to Brajogopal Samanta.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

284_2023_3431_MOESM1_ESM.xlsx

Supplementary file 1: Details of taxonomic affiliations of Borra caves speleothem metagenomic contigs belonging to Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes groups. (XLSX 809 KB)

284_2023_3431_MOESM2_ESM.xlsx

Supplementary file 2: Details of taxonomic affiliations of Borra caves spring water metagenomic contigs belonging to Proteobacteria, Actinobacteria, FCB, Terrabacteria, and PVC groups. (XLSX 681 KB)

284_2023_3431_MOESM3_ESM.pdf

Supplementary file 3: Details of genes assigned to the different types of metabolism and metabolic pathways and their relative abundance. (PDF 193 KB)

284_2023_3431_MOESM4_ESM.pdf

Supplementary file 4: KEGG map for major energy metabolic pathways detected in Borra caves metagenome, including methane metabolism, carbon fixation, sulfur metabolism, and nitrogen metabolism. (PDF 194 KB)

284_2023_3431_MOESM5_ESM.xlsx

Supplementary file 5: Biosynthetic gene cluster abundance within the Borra caves speleothem metagenome contigs. BLASTP and NaPDoS analyses of C and KS domains of NRPS and PKS. BLASTP analysis of core genes of terpene biosynthetic gene clusters. (XLSX 64 KB)

284_2023_3431_MOESM6_ESM.png

Supplementary file 6: Maximum likelihood tree of Ketosynthase domains (KS domain) against the NaPDoS domain database. Natural products are color-coded according to their bioactivity. The branches of the KS domain classes were colored on the tree. Confidence values are shown on nodes. (PNG 1644 KB)

284_2023_3431_MOESM7_ESM.tif

Supplementary file 7: Relative abundance of bacterial phylum in Borra cave speleothem and spring water metagenomic libraries. (TIF 1341 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samanta, B., Sharma, S. & Budhwar, R. Metagenome Analysis of Speleothem Microbiome from Subterranean Cave Reveals Insight into Community Structure, Metabolic Potential, and BGCs Diversity. Curr Microbiol 80, 317 (2023). https://doi.org/10.1007/s00284-023-03431-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03431-9

Navigation