Skip to main content
Log in

Synergistic Effect and Time-Kill Evaluation of Eugenol Combined with Cefotaxime Against Staphylococcus aureus

  • Short Communication
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Eugenol, a clove-derived aromatic compound has shown antibacterial activity against many species, including Staphylococcus aureus. Epidemiology studies from the past two decades reported an increased number of healthcare-associated and skin tissue infections due to S. aureus antimicrobial resistance (AMR) including several cases of resistance to β-lactam antibiotics, such as cefotaxime. We aimed to investigate whether eugenol can cause lethality of S. aureus including the strain resistant to methicillin and the wild strain isolated from a hospital patient. Moreover, we asked whether eugenol could enhance the therapeutic effect of cefotaxime, one of the most prescribed 3rd generation cephalosporin β-lactam antibiotics, of which S. aureus resistance to this antibiotic has emerged. The minimum inhibitory concentration (MIC) of each substance was determined using the standard broth microdilution test following the combination experiment performed using checkerboard dilution. The type of interactions, including synergistic and additivity, was determined using isobologram analysis, and the dose reduction index (DRI) was calculated. The time-kill kinetic assay was performed to evaluate the dynamic bactericidal activity of eugenol alone and in combination with cefotaxime. We showed that eugenol alone is bactericidal against S. aureus ATCC 33591 and the clinical isolate. Eugenol combined with cefotaxime resulted synergistic effect against S. aureus ATCC 33591, ATCC 29213, and ATCC 25923. Eugenol may be capable to improve the therapeutic effect of cefotaxime against methicillin-resistant S. aureus (MRSA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. WHO (2019) New report calls for urgent action to avert antimicrobial resistance crisis. In: Jt. News Release. https://www.who.int/news/item/29-04-2019-new-report-calls-for-urgent-action-to-avert-antimicrobial-resistance-crisis

  2. The BMJ (2023) Antimicrobial resistance in the South-East Asia. In: WHO South East Asia Reg. Off. https://www.bmj.com/anti-microbial-resistance

  3. Garau J, Wilson W, Wood M, Carlet J (1997) Fourth-generation cephalosporins: a review of in vitro activity, pharmacokinetics, pharmacodynamics and clinical utility. Clin Microbiol Infect 3:S87–S101. https://doi.org/10.1111/J.1469-0691.1997.TB00649.X

    Article  Google Scholar 

  4. Kim BN, Paterson DL (2021) Cefotaxime. Kucers Use Antibiot A Clin Rev Antibacterial, Antifung Antiparasit Antivir Drugs, Seventh Ed 426–463. https://doi.org/10.1201/9781315152110

  5. Martin-Mons S, Lorrain S, Iacobelli S et al (2021) Antibiotics prescription over three years in a French benchmarking network of 23 level 3 neonatal wards. Front Pharmacol 11:1–9. https://doi.org/10.3389/fphar.2020.585018

    Article  Google Scholar 

  6. Islam T, Kubra K, Chowdhury MMH (2018) Prevalence of methicillin-resistant Staphylococcus aureus in hospitals in Chittagong, Bangladesh: a threat of nosocomial infection. J Microsc Ultrastruct 6:188. https://doi.org/10.4103/JMAU.JMAU_33_18

    Article  PubMed  PubMed Central  Google Scholar 

  7. Preeja PP, Kumar SH, Shetty V (2021) Prevalence and characterization of methicillin-resistant Staphylococcus aureus from community-and hospital-associated infections: a tertiary care center study. Antibiotics 10:1–10. https://doi.org/10.3390/antibiotics10020197

    Article  CAS  Google Scholar 

  8. Awoke T, Teka B, Seman A et al (2021) High prevalence of multidrug-resistant klebsiella pneumoniae in a tertiary care hospital in Ethiopia. Antibiotics 10:1007. https://doi.org/10.3390/ANTIBIOTICS10081007/S1

    Article  PubMed  PubMed Central  Google Scholar 

  9. Brochmann PR, Hesketh A, Jana B et al (2018) Transcriptome analysis of extended-spectrum β-lactamase-producing Escherichia coli and methicillin-resistant Staphylococcus aureus exposed to cefotaxime. Sci Rep 8:16076. https://doi.org/10.1038/S41598-018-34191-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Darmstadt GL, Batra M, Zaidi AKM (2009) Parenteral antibiotics for the treatment of serious neonatal bacterial infections in developing country settings. Pediatr Infect Dis J 28:S37–S42. https://doi.org/10.1097/INF.0B013E31819588C3

    Article  PubMed  Google Scholar 

  11. Kang N, Housman ST, Nicolau DP (2015) Assessing the surrogate susceptibility of oxacillin and cefoxitin for commonly utilized parenteral agents against methicillin-susceptible Staphylococcus aureus: focus on ceftriaxone discordance between predictive susceptibility and in vivo exposures. Pathogens 4:599–605. https://doi.org/10.3390/PATHOGENS4030599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tong SYC, Davis JS, Eichenberger E et al (2015) Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 28:603. https://doi.org/10.1128/CMR.00134-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cheesman MJ, Ilanko A, Blonk B, Cock IE (2017) Developing new antimicrobial therapies: are synergistic combinations of plant extracts/compounds with conventional antibiotics the solution? Pharmacogn Rev 11:57–72. https://doi.org/10.4103/phrev.phrev_21_17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Van Vuuren S, Viljoen A (2011) Plant-based antimicrobial studies–methods and approaches to study the interaction between natural products. Planta Med 77:1168–1182. https://doi.org/10.1055/S-0030-1250736

    Article  PubMed  Google Scholar 

  15. Puškárová A, Bučková M, Kraková L et al (2017) (2017) The antibacterial and antifungal activity of six essential oils and their cyto/genotoxicity to human HEL 12469 cells. Sci Rep 71(7):1–11. https://doi.org/10.1038/s41598-017-08673-9

    Article  CAS  Google Scholar 

  16. Bernardes WA, Lucarini R, Tozatti MG et al (2010) Antibacterial activity of the essential oil from Rosmarinus officinalis and its major components against oral pathogens. Zeitschrift für Naturforsch C 65:588–593. https://doi.org/10.1515/znc-2010-9-1009

    Article  CAS  Google Scholar 

  17. Lim J-H, Kim M-S, Hwang Y-H et al (2012) Effect of orange oil on the oral absorption of enrofloxacin in rats. Exp Anim 61:71–75. https://doi.org/10.1538/expanim.61.71

    Article  CAS  PubMed  Google Scholar 

  18. El-Tarabily KA, El-Saadony MT, Alagawany M et al (2021) Using essential oils to overcome bacterial biofilm formation and their antimicrobial resistance. Saudi J Biol Sci 28:5145–5156. https://doi.org/10.1016/j.sjbs.2021.05.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tang C, Chen J, Zhang L et al (2020) Exploring the antibacterial mechanism of essential oils by membrane permeability, apoptosis and biofilm formation combination with proteomics analysis against methicillin-resistant Staphylococcus aureus. Int J Med Microbiol 310:151435. https://doi.org/10.1016/j.ijmm.2020.151435

    Article  CAS  PubMed  Google Scholar 

  20. Xu JG, Liu T, Hu QP, Cao XM (2016) Chemical composition, antibacterial properties and mechanism of action of essential oil from clove buds against Staphylococcus aureus. Molecules 21:1194. https://doi.org/10.3390/MOLECULES21091194

    Article  PubMed  PubMed Central  Google Scholar 

  21. Turner NA, Sharma-Kuinkel BK, Maskarinec SA et al (2019) Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat Rev Microbiol 17:203–218. https://doi.org/10.1038/S41579-018-0147-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yadav MK, Chae SW, Im GJ et al (2015) Eugenol: a phyto-compound effective against methicillin-resistant and methicillin-sensitive Staphylococcus aureus Clinical strain biofilms. PLoS ONE 10:e0119564. https://doi.org/10.1371/JOURNAL.PONE.0119564

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kyaw BM, Arora S, Lim CS (2012) Bactericidal antibiotic-phytochemical combinations against methicillin resistant Staphylococcus aureus. Brazilian J Microbiol 43:938. https://doi.org/10.1590/S1517-838220120003000013

    Article  CAS  Google Scholar 

  24. Nurcahyanti ADR, Satriawan N, Sharopov F (2022) Free radical scavenging synergism of fucoxanthin with lipophilic plant products. Nat Prod Res. https://doi.org/10.1080/14786419.2022.2084737

    Article  PubMed  Google Scholar 

  25. EUCAST: Clinical breakpoints and dosing of antibiotics. https://www.eucast.org/clinical_breakpoints. Accessed 7 May 2023

  26. Riss TL, Moravec RA, Niles AL, et al (2016) Cell Viability Assays. Eli Lilly & Company and the National Center for Advancing Translational Sciences

  27. Orhan G, Bayram A, Zer Y, Balci I (2005) Synergy tests by E test and checkerboard methods of antimicrobial combinations against Brucella melitensis. J Clin Microbiol 43:140–143. https://doi.org/10.1128/JCM.43.1.140-143.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rakholiya KD, Kaneria MJ, Chanda S V. (2013) Medicinal plants as alternative sources of therapeutics against multidrug-resistant pathogenic microorganisms based on their antimicrobial potential and synergistic properties. In: Fighting multidrug resistance with herbal extracts, essential oils and their components. Academic Press, pp 165–179

  29. Kon KV, Rai MK (2013) Combining essential oils with antibiotics and other antimicrobial agents to overcome Multidrug-Resistant Bacteria. In: Fighting multidrug resistance with herbal extracts, essential oils and their components. Academic Press, pp 149–164

  30. Huang RY, Pei L, Liu Q et al (2019) Isobologram analysis: a comprehensive review of methodology and current research. Front Pharmacol 10:1–12. https://doi.org/10.3389/FPHAR.2019.01222

    Article  Google Scholar 

  31. Barry AL, Nadler APW et al (1999) M26-a methods for determining bactericidal activity of antimicrobial agents; approved guideline this document provides procedures for determining the lethal activity of antimicrobial agents. Clin Lab Stand Inst 19:1–14

    Google Scholar 

  32. Okoliegbe IN, Hijazi K, Cooper K et al (2021) Antimicrobial synergy testing: Comparing the tobramycin and ceftazidime gradient diffusion methodology used in assessing synergy in cystic fibrosis-derived multidrug-resistant pseudomonas aeruginosa. Antibiotics. https://doi.org/10.3390/ANTIBIOTICS10080967/S1

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gómara M, Ramón-García S (2019) The FICI paradigm: correcting flaws in antimicrobial in vitro synergy screens at their inception. Biochem Pharmacol 163:299–307. https://doi.org/10.1016/J.BCP.2019.03.001

    Article  PubMed  Google Scholar 

  34. Sopirala MM, Mangino JE, Gebreyes WA et al (2010) Synergy testing by Etest, microdilution checkerboard, and time-kill methods for pan-drug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 54:4678–4683. https://doi.org/10.1128/AAC.00497-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pankey GA, Ashcraft DS, Dornelles A (2013) Comparison of 3 Etest(®) methods and time-kill assay for determination of antimicrobial synergy against carbapenemase-producing Klebsiella species. Diagn Microbiol Infect Dis 77:220–226. https://doi.org/10.1016/J.DIAGMICROBIO.2013.07.006

    Article  CAS  PubMed  Google Scholar 

  36. Gaudereto JJ, Neto LVP, Leite GC et al (2020) Comparison of methods for the detection of in vitro synergy in multidrug-resistant gram-negative bacteria. BMC Microbiol. https://doi.org/10.1186/S12866-020-01756-0

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kim SY, Kim J, Il JS et al (2015) Antimicrobial effects and resistant regulation of magnolol and honokiol on methicillin-resistant Staphylococcus aureus. Biomed Res Int. https://doi.org/10.1155/2015/283630

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang S, Kang O-H, Kwon D-Y et al (2021) Trans-cinnamaldehyde exhibits synergy with conventional antibiotic against methicillin-resistant Staphylococcus aureus. Int J Mol Sci 22:2752. https://doi.org/10.3390/IJMS22052752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Buru AS, Neela VK, Mohandas K, Pichika MR (2022) Microarray analysis of the genomic effect of eugenol on methicillin-resistant Staphylococcus aureus. Molecules 27:3249. https://doi.org/10.3390/molecules27103249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lister JL, Horswill AR (2014) Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Front Cell Infect Microbiol 4:178. https://doi.org/10.3389/FCIMB.2014.00178/BIBTEX

    Article  PubMed  PubMed Central  Google Scholar 

  41. Trotonda MP, Xiong YQ, Memmi G et al (2009) Role of mgrA and sarA in methicillin-resistant Staphylococcus aureus autolysis and resistance to cell wall-active antibiotics. J Infect Dis 199:209–218. https://doi.org/10.1086/595740

    Article  CAS  PubMed  Google Scholar 

  42. Das B, Mandal D, Dash SK et al (2016) Eugenol provokes ROS-mediated membrane damage-associated antibacterial activity against clinically isolated multidrug-resistant Staphylococcus aureus strains. Infect Dis 16:11–19

    Google Scholar 

  43. Lambert RJW, Lambert R (2003) A model for the efficacy of combined inhibitors. J Appl Microbiol 95:734–743. https://doi.org/10.1046/J.1365-2672.2003.02039.X

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the Atma Jaya Catholic University of Indonesia. The authors extended deep gratitude to the peer-reviewers for their extensive and constructive feedback to this study.

Funding

Universitas Katolik Indonesia Atma Jaya.

Author information

Authors and Affiliations

Authors

Contributions

JL: data collection, methodology, formal analysis, and writing ˗ original draft, ADRN: data collection, conceptualization, methodology, data analysis, supervision, and writing ˗ review and revised, EE: resources, supervision, data analysis, and writing ˗ review. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Agustina D. R. Nurcahyanti.

Ethics declarations

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lady, J., Nurcahyanti, A.D.R. & Tjoa, E. Synergistic Effect and Time-Kill Evaluation of Eugenol Combined with Cefotaxime Against Staphylococcus aureus. Curr Microbiol 80, 244 (2023). https://doi.org/10.1007/s00284-023-03364-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03364-3

Navigation