Skip to main content
Log in

Comprehensive Genomic Analysis Reveals Extensive Diversity of Type I and Type IV Secretion Systems in Klebsiella pneumoniae

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The diversity and distribution of secretion systems in Klebsiella pneumoniae are unclear. In this study, the six common secretion systems (T1SS–T6SS) were comprehensively investigated in the genomes of 952 K. pneumoniae strains. T1SS, T2SS, type T subtype of T4SS, T5SS, and subtype T6SSi of T6SS were found. The findings indicated fewer types of secretion systems in K. pneumoniae than reported in Enterobacteriaceae, such as Escherichia coli. One conserved T2SS, one conserved T5SS, and two conserved T6SS were detected in more than 90% of the strains. In contrast, the strains displayed extensive diversity of T1SS and T4SS. Notably, T1SS and T4SS were enriched in the hypervirulent and classical multidrug resistance pathotypes of K. pneumoniae, respectively. The results expand the epidemiological knowledge of the virulence and transmissibility of pathogenic K. pneumoniae and contribute to identify the potential strains for safe applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data are available with corresponding author.

Code Availability

Not applicable.

References

  1. Vading M, Nauclér P, Kalin M, Giske CG, Chang Y-F (2018) Invasive infection caused by Klebsiella pneumoniae is a disease affecting patients with high comorbidity and associated with high long-term mortality. PLoS ONE 13(4):e0195258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Munoz-Price LS et al (2013) Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis 13(9):785–796. https://doi.org/10.1016/S1473-3099(13)70190-7

    Article  PubMed  PubMed Central  Google Scholar 

  3. Russo TA, Marr CM (2019) Hypervirulent Klebsiella pneumoniae. Clin Microbiol Rev 32(3):e00001-19. https://doi.org/10.1128/CMR.00001-19

    Article  PubMed  PubMed Central  Google Scholar 

  4. Xu G, Li C (2017) Identifying the shared metabolic objectives of glycerol bioconversion in Klebsiella pneumoniae under different culture conditions. J Biotechnol 248:59–68. https://doi.org/10.1016/j.jbiotec.2017.03.014

    Article  CAS  PubMed  Google Scholar 

  5. Pan DT, Wang XD, Shi HY, Yuan DC, Xiu ZL (2019) Ensemble optimization of microbial conversion of glycerol into 1, 3-propanediol by Klebsiella pneumoniae. J Biotechnol 301:68–78. https://doi.org/10.1016/j.jbiotec.2019.06.001

    Article  CAS  PubMed  Google Scholar 

  6. Moradigaravand D, Martin V, Peacock SJ, Parkhill J (2017) Evolution and epidemiology of multidrug-resistant Klebsiella pneumoniae in the United Kingdom and Ireland. Bio. https://doi.org/10.1128/mBio.01976-16

    Article  Google Scholar 

  7. Sana TG et al (2016) Salmonella typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut. Proc Natl Acad Sci USA 113(34):E5044–E5051. https://doi.org/10.1073/pnas.1608858113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Green ER, Mecsas J (2016) Bacterial secretion systems: an overview. Microbiol Spectr. https://doi.org/10.1128/microbiolspec.VMBF-0012-2015

    Article  PubMed  Google Scholar 

  9. Hsieh PF, Lu YR, Lin TL, Lai LY, Wang JT (2019) Klebsiella pneumoniae type VI secretion system contributes to bacterial competition, cell invasion, type-1 fimbriae expression, and in vivo colonization. J Infect Dis 219(4):637–647. https://doi.org/10.1093/infdis/jiy534

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Y, Xu Y, Huang Y (2022) Virulence genotype and correlation of clinical severeness with presence of the type VI secretion system in Klebsiella pneumoniae isolates causing bloodstream infections. Infect Drug Resist 15:1487–1497. https://doi.org/10.2147/IDR.S353858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zeng L, Zhang J, Hu K, Li J, Wang J, Yang C, Huang W, Yin L, Zhang X (2021) Microbial characteristics and genomic analysis of an ST11 carbapenem-resistant Klebsiella pneumoniae strain carrying bla KPC-2 conjugative drug-resistant plasmid. Front Public Health 9:809753. https://doi.org/10.3389/fpubh.2021.809753

    Article  PubMed  Google Scholar 

  12. Pena RT et al (2019) Relationship between quorum sensing and secretion systems. Front Microbiol 10:1100. https://doi.org/10.3389/fmicb.2019.01100

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yin Z et al (2020) Horizontal gene transfer clarifies taxonomic confusion and promotes the genetic diversity and pathogenicity of Plesiomonas shigelloides. mSystems 5(5):e00448-20. https://doi.org/10.1128/mSystems.00448-20

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hamamoto K, Ueda S, Yamamoto Y, Hirai I, Munson E (2015) Evaluation of a method using three genomic guided Escherichia coli markers for phylogenetic typing of E. coli isolates of various genetic backgrounds. J Clin Microbiol 53(6):1848–1853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Iwase T, Ogura Y, Hayashi T, Mizunoe Y (2016) Complete genome sequence of Klebsiella pneumoniae YH43. Genome Announc 4(2):e00242-16. https://doi.org/10.1128/genomeA.00242-16

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chen M, Li Y, Li S, Tang L, Zheng J, An Q (2016) Genomic identification of nitrogen-fixing Klebsiella variicola, K. pneumoniae and K. quasipneumoniae. J Basic Microbiol 56(1):78–84. https://doi.org/10.1002/jobm.201500415

    Article  CAS  PubMed  Google Scholar 

  17. Shin SH, Kim S, Kim JY, Lee S, Um Y, Oh MK, Kim YR, Lee J, Yang KS (2012) Complete genome sequence of the 2,3-butanediol-producing Klebsiella pneumoniae strain KCTC 2242. J Bacteriol 194(10):2736–2737. https://doi.org/10.1128/JB.00027-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Abby SS, Cury J, Guglielmini J, Neron B, Touchon M, Rocha EP (2016) Identification of protein secretion systems in bacterial genomes. Sci Rep 6:23080. https://doi.org/10.1038/srep23080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li J, Yao Y, Xu HH, Hao L, Deng Z, Rajakumar K, Ou HY (2015) SecReT6: a web-based resource for type VI secretion systems found in bacteria. Environ Microbiol 17(7):2196–2202. https://doi.org/10.1111/1462-2920.12794

    Article  PubMed  Google Scholar 

  20. Bi D, Liu L, Tai C, Deng Z, Rajakumar K, Ou HY (2013) SecReT4: a web-based bacterial type IV secretion system resource. Nucleic Acids Res 41:D660–D665. https://doi.org/10.1093/nar/gks1248

    Article  CAS  PubMed  Google Scholar 

  21. Li J, Tai C, Deng Z, Zhong W, He Y, Ou HY (2018) VR profile: gene-cluster-detection-based profiling of virulence and antibiotic resistance traits encoded within genome sequences of pathogenic bacteria. Brief Bioinform 19(4):566–574. https://doi.org/10.1093/bib/bbw141

    Article  CAS  PubMed  Google Scholar 

  22. Rozewicki J, Li S, Amada KM, Standley DM, Katoh K (2019) MAFFT-DASH: integrated protein sequence and structural alignment. Nucleic Acids Res 47(W1):W5–W10. https://doi.org/10.1093/nar/gkz342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Aanensen DM, Spratt BG (2005) The multilocus sequence typing network: mlst.net. Nucleic Acids Res 33:W728–W733. https://doi.org/10.1093/nar/gki415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liao W, Huang HH, Huang QS, Fang-Ling D, Dan Wei D, La-Gen W, Xiang TX, Zhang W, Liu Y (2022) Distribution of type VI secretion system (T6SS) in clinical Klebsiella pneumoniae strains from a Chinese hospital and its potential relationship with virulence and drug resistance. Microb Pathog 162:105085. https://doi.org/10.1016/j.micpath.2021.105085

    Article  CAS  PubMed  Google Scholar 

  26. Bao H et al (2019) Genetic diversity and evolutionary features of type VI secretion systems in Salmonella. Future Microbiol 14:139–154. https://doi.org/10.2217/fmb-2018-0260

    Article  CAS  PubMed  Google Scholar 

  27. Brown CL, Garner E, Jospin G, Coil DA, Schwake DO, Eisen JA, Mukhopadhyay B, Pruden AJ (2020) Whole genome sequence analysis reveals the broad distribution of the RtxA type 1 secretion system and four novel putative type 1 secretion systems throughout the Legionella genus. PLoS ONE 15(1):e0223033. https://doi.org/10.1371/journal.pone.0223033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rahmani A, Delavat F, Lambert C, Le Goic N, Dabas E, Paillard C, Pichereau V (2021) Implication of the type IV secretion system in the pathogenicity of vibrio tapetis, the etiological agent of brown ring disease affecting the manila clam ruditapes philippinarum. Front Cell Infect Microbiol 11:634427. https://doi.org/10.3389/fcimb.2021.634427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Guglielmini J, Neron B, Abby SS, Garcillan-Barcia MP, de la Cruz F, Rocha EP (2014) Key components of the eight classes of type IV secretion systems involved in bacterial conjugation or protein secretion. Nucleic Acids Res 42(9):5715–5727. https://doi.org/10.1093/nar/gku194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sanikhani R, Moeinirad M, Shahcheraghi F, Lari A, Fereshteh S, Sepehr A, Salimi A, Badmasti F (2021) Molecular epidemiology of hypervirulent Klebsiella pneumoniae: a systematic review and meta-analysis. Iran J Microbiol 13(3):257–265. https://doi.org/10.18502/ijm.v13i3.6384

    Article  PubMed  PubMed Central  Google Scholar 

  31. Sidjabat H et al (2011) Carbapenem resistance in Klebsiella pneumoniae due to the New Delhi metallo-beta-lactamase. Clin Infect Dis 52(4):481–484. https://doi.org/10.1093/cid/ciq178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhou X, Chu Q, Li S, Yang M, Bao Y, Zhang Y, Fu S, Gong H (2022) A new and effective genes-based method for phylogenetic analysis of Klebsiella pneumoniae. Infect Genet Evol 100:105275. https://doi.org/10.1016/j.meegid.2022.105275

    Article  CAS  PubMed  Google Scholar 

  33. Whelan R, McVicker G, Leo JC (2020) Staying out or going in? The interplay between type 3 and type 5 secretion systems in adhesion and invasion of enterobacterial pathogens. Int J Mol Sci. https://doi.org/10.3390/ijms21114102

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhao X, Wei S, Tian Q, Peng W, Tao Y, Bo R, Liu M, Li J (2022) Eugenol exposure in vitro inhibits the expressions of T3SS and TIF virulence genes in salmonella typhimurium and reduces its pathogenicity to chickens. Microb Pathog 162:105314. https://doi.org/10.1016/j.micpath.2021.105314

    Article  CAS  PubMed  Google Scholar 

  35. Michel-Souzy S, Douzi B, Cadoret F, Raynaud C, Quinton L, Ball G, Voulhoux R (2018) Direct interactions between the secreted effector and the T2SS components GspL and GspM reveal a new effector-sensing step during type 2 secretion. J Biol Chem 293(50):19441–19450. https://doi.org/10.1074/jbc.RA117.001127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pedron J, Mondy S, des Essarts Y R, Van Gijsegem F, and Faure D, (2014) Genomic and metabolic comparison with Dickeya dadantii 3937 reveals the emerging Dickeya solani potato pathogen to display distinctive metabolic activities and T5SS/T6SS-related toxin repertoire. BMC Genomics 15:283. https://doi.org/10.1186/1471-2164-15-283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jiang Q, Xu Q, Kenez A, Chen S, Yang G (2022) Klebsiella pneumoniae infection is associated with alterations in the gut microbiome and lung metabolome. Microbiol Res 263:127139. https://doi.org/10.1016/j.micres.2022.127139

    Article  CAS  PubMed  Google Scholar 

  38. Chen Z, Zhao Z, Hui X, Zhang J, Hu Y, Chen R, Cai X, Wang Y (2021) T1SE stacker: a tri-layer stacking model effectively predicts bacterial type 1 secreted proteins based on c-terminal non-repeats-in-toxin-motif sequence features. Front Microbiol 12:813094. https://doi.org/10.3389/fmicb.2021.813094

    Article  PubMed  Google Scholar 

  39. Fursova NK et al (2021) Multidrug-resistant Klebsiella pneumoniae causing severe infections in the neuro-ICU. Antibiotics (Basel) 10(8):979. https://doi.org/10.3390/antibiotics10080979

    Article  CAS  PubMed  Google Scholar 

  40. Villa L et al (2017) Diversity, virulence, and antimicrobial resistance of the KPC-producing Klebsiella pneumoniae ST307 clone. Microb Genom 3(4):e000110. https://doi.org/10.1099/mgen.0.000110

    Article  PubMed  PubMed Central  Google Scholar 

  41. Franklin-Alming FV, Kaspersen H, Hetland MAK, Bakksjo RJ, Nesse LL, Leangapichart T, Lohr IH, Telke AA, Sunde M (2021) Exploring Klebsiella pneumoniae in healthy poultry reveals high genetic diversity, good biofilm-forming abilities and higher prevalence in Turkeys than broilers. Front Microbiol 12:725414. https://doi.org/10.3389/fmicb.2021.725414

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hosbul T, Guney-Kaya K, Guney M, Sakarya S, Bozdogan B, Oryasin E (2021) Carbapenem and colistin resistant Klebsiella Pneumoniae ST14 and ST2096 dominated in two hospitals in Turkey. Clin Lab. https://doi.org/10.7754/Clin.Lab.2021.201226

    Article  PubMed  Google Scholar 

  43. Matono T, Morita M, Nakao N, Teshima Y, Ohnishi M (2022) Genomic insights into virulence factors affecting tissue-invasive Klebsiella pneumoniae infection. Ann Clin Microb Anti 21(1):1–9. https://doi.org/10.1186/s12941-022-00494-7

    Article  CAS  Google Scholar 

  44. Jaboulay C, Godeux AS, Doublet P, Vianney A (2021) Regulatory networks of the T4SS control: from host cell sensing to the biogenesis and the activity during the infection. J Mol Biol 433(9):166892. https://doi.org/10.1016/j.jmb.2021.166892

    Article  CAS  PubMed  Google Scholar 

  45. Gaiarsa S et al (2015) Genomic epidemiology of Klebsiella pneumoniae in Italy and novel insights into the origin and global evolution of its resistance to carbapenem antibiotics. Antimicrob Agents Chemother 59(1):389–396. https://doi.org/10.1128/Aac.04224-14

    Article  PubMed  Google Scholar 

  46. Gao LR, Jiang X, Fu SL, Gong H (2014) In silico identification of potential virulence genes in 1,3-propanediol producer Klebsiella pneumonia. J Biotechnol 189(10):9–14. https://doi.org/10.1016/j.jbiotec.2014.08.027

    Article  CAS  PubMed  Google Scholar 

  47. Lee IR et al (2016) Differential host susceptibility and bacterial virulence factors driving Klebsiella liver abscess in an ethnically diverse population. Sci Rep 6:29316. https://doi.org/10.1038/srep29316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We want to acknowledge all the laboratory members at the bioengineering department, the East China University of Science and Technology who help provide the requirements of scientific research.

Funding

This work was supported by the National Natural Science Foundation of China under Grant No. 31271862.

Author information

Authors and Affiliations

Authors

Contributions

MY, XZ and HG conceived and designed the study. MY, YB and YZ collected the data and performed the sequence analysis. BL, LG, WT and JT check the data of this study. MY and HG wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Heng Gong.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Table S1

Information of 952 Klebsiella pneumoniae strains. Supplementary file1 (XLSX 233 KB)

Table S2

Secretion systems identified in 952 Klebsiella pneumoniae strains, and the co-existing genes in the corresponding secretion system cluster used for phylogenetic analysis. Supplementary file2 (XLSX 233 KB)

Table S3

Number of virulence genes and resistant genes in 952 Klebsiella pneumoniae strains. Supplementary file3 (XLSX 61 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Zhou, X., Bao, Y. et al. Comprehensive Genomic Analysis Reveals Extensive Diversity of Type I and Type IV Secretion Systems in Klebsiella pneumoniae. Curr Microbiol 80, 270 (2023). https://doi.org/10.1007/s00284-023-03362-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03362-5

Navigation