Skip to main content
Log in

Effect of Limosilactobacillus reuteri ZJF036 on Growth Performance and Gut Microbiota in Juvenile Beagle Dogs

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

This experiment investigated the effects of Limosilactobacillus reuteri ZJF036 on growth performance, serum biochemical parameters, and gut microbiota in beagle dogs. Sixteen 75 ± 5-day-old healthy male beagles (4.51 ± 1.37 kg) were randomly divided into two groups; the experimental group (L1) and the control group (L0), and then fed with or without a basal diet containing L. reuteri ZJF036 (109 CFU/g), respectively. The results showed that there was no significant difference in daily weight gain between the two groups (P > 0.05). However, we found that L. reuteri ZJF036 decreased Chao1 index and ACE index and increased the relative abundance of Firmicutes and Fusobacteria (P < 0.05) compared to the L0 group. In addition, we also found that the ratio of Firmicutes to Bacteroidetes was decreased in L1 group. Furthermore, the relative abundance of Lactobacillus increased, while that of Turicibacter and Blautia decreased in L1 group (P < 0.05). In conclusion, L. reuteri ZJF036 appeared to regulate the intestinal microbiota of beagle dogs. This study revealed the potential use of L. reuteri ZJBF036 as a probiotic supplement for beagle dogs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hill C, Guarner F, Reid G et al (2014) Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506–514. https://doi.org/10.1038/nrgastro.2014.66

    Article  PubMed  Google Scholar 

  2. Shi S, Qi Z, Sheng T et al (2019) Antagonistic trait of Lactobacillus reuteri S5 against Salmonella enteritidis and assessment of its potential probiotic characteristics. Microb Pathog 137:103773. https://doi.org/10.1016/j.micpath.2019.103773

    Article  CAS  PubMed  Google Scholar 

  3. Saulnier DM, Santos F, Roos S et al (2011) Exploring metabolic pathway reconstruction and genome-wide expression profiling in Lactobacillus reuteri to define functional probiotic features. PLoS One 6:e18783. https://doi.org/10.1371/journal.pone.0018783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Francavilla R, Lionetti E, Castellaneta S et al (2012) Randomised clinical trial: Lactobacillus reuteri DSM 17938 vs. placebo in children with acute diarrhoea–a double-blind study. Aliment Pharmacol Ther 36:363–369. https://doi.org/10.1111/j.1365-2036.2012.05180.x

    Article  CAS  PubMed  Google Scholar 

  5. Pernica JM, Steenhoff AP, Mokomane M et al (2017) Rapid enteric testing to permit targeted antimicrobial therapy, with and without Lactobacillus reuteri probiotics, for paediatric acute diarrhoeal disease in Botswana: a pilot, randomized, factorial, controlled trial. PLoS One 12:e0185177. https://doi.org/10.1371/journal.pone.0185177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu Y, Tian X, He B et al (2019) Lactobacillus reuteri DSM 17938 feeding of healthy newborn mice regulates immune responses while modulating gut microbiota and boosting beneficial metabolites. Am J Physiol Gastrointest Liver Physiol 317:G824–G838. https://doi.org/10.1152/ajpgi.00107.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Redfern A, Suchodolski J, Jergens A (2017) Role of the gastrointestinal microbiota in small animal health and disease. Vet Record 181:370–370. https://doi.org/10.1136/vr.103826

    Article  PubMed  Google Scholar 

  8. Guard BC, Mila H, Steiner JM et al (2017) Characterization of the fecal microbiome during neonatal and early pediatric development in puppies. PLoS One 12:e0175718. https://doi.org/10.1371/journal.pone.0175718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhou Y, Xu ZZ, He Y et al (2018) Gut microbiota offers universal biomarkers across ethnicity in inflammatory bowel disease diagnosis and infliximab response prediction. mSystems 3:e00188-17. https://doi.org/10.1128/mSystems.00188-17

    Article  PubMed  PubMed Central  Google Scholar 

  10. Salas-Mani A, Jeusette I, Castillo I et al (2018) Fecal microbiota composition changes after a BW loss diet in Beagle dogs. J Anim Sci 96:3102–3111. https://doi.org/10.1093/jas/sky193

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sartor RB (2004) Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics. Gastroenterology 126:1620–1633. https://doi.org/10.1053/j.gastro.2004.03.024

    Article  PubMed  Google Scholar 

  12. Scaldaferri F, Gerardi V, Lopetuso LR et al (2013) Gut microbial flora, prebiotics, and probiotics in IBD: their current usage and utility. Biomed Res Int 2013:435268. https://doi.org/10.1155/2013/435268

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhang RC, Cui HZ, Cai XH et al (2020) Probiotic characteristics of Lactobacillus reuteri ZJF036 isolated from fox. Chin J Anim Nutr 32(08):3819–3829

    CAS  Google Scholar 

  14. Nutritional Research Council (2006) Nutrient requirements of dogs and cats(M). The National Academies Press, Washington, DC

    Google Scholar 

  15. AAFCO (2009) Association of American feed control officials. Official Publication, Oxford, IN, pp 138–142

    Google Scholar 

  16. Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963. https://doi.org/10.1093/bioinformatics/btr507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bokulich NA, Subramanian S, Faith JJ et al (2013) Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods 10:57–59. https://doi.org/10.1038/nmeth.2276

    Article  CAS  PubMed  Google Scholar 

  18. Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Edgar RC, Haas BJ, Clemente JC et al (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. https://doi.org/10.1093/bioinformatics/btr381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Haas BJ, Gevers D, Earl AM et al (2011) Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res 21:494–504. https://doi.org/10.1101/gr.112730.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998. https://doi.org/10.1038/nmeth.2604

    Article  CAS  PubMed  Google Scholar 

  22. DeSantis TZ, Hugenholtz P, Larsen N et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072. https://doi.org/10.1128/AEM.03006-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. https://doi.org/10.1128/AEM.00062-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pawar MM, Pattanaik AK, Sinha DK et al (2017) Effect of dietary mannanoligosaccharide supplementation on nutrient digestibility, hindgut fermentation, immune response and antioxidant indices in dogs. J Anim Sci Technol 59:11. https://doi.org/10.1186/s40781-017-0136-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lin C-Y, Alexander C, Steelman AJ et al (2019) Effects of a Saccharomyces cerevisiae fermentation product on fecal characteristics, nutrient digestibility, fecal fermentative end-products, fecal microbial populations, immune function, and diet palatability in adult dogs1. J Anim Sci 97:1586–1599. https://doi.org/10.1093/jas/skz064

    Article  PubMed  PubMed Central  Google Scholar 

  27. Toscano M, De Grandi R, Stronati L et al (2017) Effect of Lactobacillus rhamnosus HN001 and Bifidobacterium longum BB536 on the healthy gut microbiota composition at phyla and species level: a preliminary study. World J Gastroenterol 23:2696–2704. https://doi.org/10.3748/wjg.v23.i15.2696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Drago L, Toscano M, De Grandi R et al (2017) Microbiota network and mathematic microbe mutualism in colostrum and mature milk collected in two different geographic areas: Italy versus Burundi. ISME J 11:875–884. https://doi.org/10.1038/ismej.2016.183

    Article  CAS  PubMed  Google Scholar 

  29. Deng P, Swanson KS (2015) Gut microbiota of humans, dogs and cats: current knowledge and future opportunities and challenges. Br J Nutr 113(Suppl):S6-17. https://doi.org/10.1017/S0007114514002943

    Article  CAS  PubMed  Google Scholar 

  30. Handl S, German AJ, Holden SL et al (2013) Faecal microbiota in lean and obese dogs. FEMS Microbiol Ecol 84:332–343. https://doi.org/10.1111/1574-6941.12067

    Article  CAS  PubMed  Google Scholar 

  31. Zhang H, Chen L (2010) Phylogenetic analysis of 16S rRNA gene sequences reveals distal gut bacterial diversity in wild wolves (Canis lupus). Mol Biol Rep 37:4013–4022. https://doi.org/10.1007/s11033-010-0060-z

    Article  CAS  PubMed  Google Scholar 

  32. Liu H, Li Z, Si H et al (2020) Comparative analysis of the gut microbiota of the blue fox (Alopex lagopus) and raccoon dog (Nyctereutes procyonoides). Arch Microbiol 202:135–142. https://doi.org/10.1007/s00203-019-01721-0

    Article  CAS  PubMed  Google Scholar 

  33. Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023. https://doi.org/10.1038/4441022a

    Article  CAS  PubMed  Google Scholar 

  34. Cmdsp I, Kf R, Pm C et al (2018) Childhood obesity and firmicutes/bacteroidetes ratio in the gut microbiota: a systematic review. Childhood Obes 14:501–509. https://doi.org/10.1089/chi.2018.0040

    Article  Google Scholar 

  35. Riva A, Borgo F, Lassandro C et al (2017) Pediatric obesity is associated with an altered gut microbiota and discordant shifts in Firmicutes populations. Environ Microbiol 19:95–105. https://doi.org/10.1111/1462-2920.13463

    Article  CAS  PubMed  Google Scholar 

  36. Ley RE, Bäckhed F, Turnbaugh P et al (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102:11070–11075. https://doi.org/10.1073/pnas.0504978102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Turnbaugh PJ, Ley RE, Mahowald MA et al (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031. https://doi.org/10.1038/nature05414

    Article  PubMed  Google Scholar 

  38. Park H-J, Lee S-E, Kim H-B et al (2015) Association of obesity with serum leptin, adiponectin, and serotonin and gut microflora in beagle dogs. J Vet Intern Med 29:43–50. https://doi.org/10.1111/jvim.12455

    Article  PubMed  Google Scholar 

  39. Chun JL, Ji SY, Lee SD et al (2020) Difference of gut microbiota composition based on the body condition scores in dogs. J Anim Sci Technol 62:239–246. https://doi.org/10.5187/jast.2020.62.2.239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Baillon M-LA, Marshall-Jones ZV, Butterwick RF (2004) Effects of probiotic Lactobacillus acidophilus strain DSM13241 in healthy adult dogs. Am J Vet Res 65:338–343. https://doi.org/10.2460/ajvr.2004.65.338

    Article  PubMed  Google Scholar 

  41. Coman MM, Verdenelli MC, Cecchini C et al (2019) Probiotic characterization of Lactobacillus isolates from canine faeces. J Appl Microbiol 126:1245–1256. https://doi.org/10.1111/jam.14197

    Article  CAS  PubMed  Google Scholar 

  42. Horie M, Miura T, Hirakata S et al (2017) Comparative analysis of the intestinal flora in type 2 diabetes and nondiabetic mice. Exp Anim 66:405–416. https://doi.org/10.1538/expanim.17-0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li C, Zhang Y, Ge Y et al (2021) Comparative transcriptome and microbiota analyses provide new insights into the adverse effects of industrial trans fatty acids on the small intestine of C57BL/6 mice. Eur J Nutr 60:975–987. https://doi.org/10.1007/s00394-020-02297-y

    Article  CAS  PubMed  Google Scholar 

  44. Biagi G, Cipollini I, Pompei A et al (2007) Effect of a Lactobacillus animalis strain on composition and metabolism of the intestinal microflora in adult dogs. Vet Microbiol 124:160–165. https://doi.org/10.1016/j.vetmic.2007.03.013

    Article  CAS  PubMed  Google Scholar 

  45. Swanson KS, Grieshop CM, Flickinger EA et al (2002) Fructooligosaccharides and Lactobacillus acidophilus modify gut microbial populations, total tract nutrient digestibilities and fecal protein catabolite concentrations in healthy adult dogs. J Nutr 132:3721–3731. https://doi.org/10.1093/jn/132.12.3721

    Article  CAS  PubMed  Google Scholar 

  46. Lebeer S, Vanderleyden J, De Keersmaecker SCJ (2008) Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev 72:728–764. https://doi.org/10.1128/MMBR.00017-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Maki JJ, Looft T (2022) Turicibacter bilis sp. nov., a novel bacterium isolated from the chicken eggshell and swine ileum. Int J Syst Evol Microbiol. https://doi.org/10.1099/ijsem.0.005153

    Article  PubMed  PubMed Central  Google Scholar 

  48. Song JJ, Tian WJ, Kwok L-Y et al (2017) Effects of microencapsulated Lactobacillus plantarum LIP-1 on the gut microbiota of hyperlipidaemic rats. Br J Nutr 118:481–492. https://doi.org/10.1017/S0007114517002380

    Article  CAS  PubMed  Google Scholar 

  49. Ma D, Wang AC, Parikh I et al (2018) Ketogenic diet enhances neurovascular function with altered gut microbiome in young healthy mice. Sci Rep 8:6670. https://doi.org/10.1038/s41598-018-25190-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu X, Mao B, Gu J et al (2021) Blautia —a new functional genus with potential probiotic properties? Gut Microbes 13:1875796. https://doi.org/10.1080/19490976.2021.1875796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

All authors are thankful to Institute of special animal and plant sciences of Chinese Academy of Agricultural Sciences.

Funding

This study was supported by the Natural Science Foundation of Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences (CAAS-ASTIP-2021-ISAPS) and the Inner Mongolia Autonomous Region Science and Technology Plan Project (2022YFDZ0072).

Author information

Authors and Affiliations

Authors

Contributions

DZ conceived the experiment, analyzed the data, and wrote the manuscript. DZ, RZ, JW, and XZ collected the samples and conducted laboratory analyses. KL conducted the animal trial. HL and HZ designed the whole trial and reviewed the manuscript. All authors approved the final manuscript as submitted.

Corresponding author

Correspondence to Hanlu Liu.

Ethics declarations

Conflict of interest

The Authors declare that there is no conflict of interest regarding the publication of this paper.

Ethical Approval

All animal use was approved by The Animal Administration and Ethics Committee of Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences (Permit No. ISAPSAEC-2021-001B).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Zhang, R., Wang, J. et al. Effect of Limosilactobacillus reuteri ZJF036 on Growth Performance and Gut Microbiota in Juvenile Beagle Dogs. Curr Microbiol 80, 155 (2023). https://doi.org/10.1007/s00284-023-03276-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-023-03276-2

Navigation