Skip to main content

Advertisement

Log in

In Vitro Study of the Effect of Inhibition of Quorum Sensing by Brominated Furanone on Peritoneal Dialysis-Associated Peritonitis Associated with Escherichia Coli Infection

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

In recent years, the occurrence of peritoneal dialysis (PD)-associated peritonitis (PDAP) with Escherichia coli infection has gradually increased. The presence of quorum sensing (QS) among bacteria facilitates the expansion of antibiotic resistance. Brominated furanone (BMF), a halogenated furanone compound isolated from macroalgae, is a new type of quorum-sensing inhibitor that can inhibit bacterial quorum sensing and reduce bacterial resistance. In this study, we established an in vitro peritoneal dialysis-associated peritonitis biofilm model. After intervention with BMF, the biofilm was destroyed, as shown by scanning electron microscopy, and the number of viable bacteria was reduced. Crystal violet semiquantitative determination showed that biofilm absorption significantly decreased, and RT–PCR showed that luxS expression was downregulated after drug intervention. Therefore, we propose that BMF can effectively inhibit E. coli QS by disrupting the bacterial biofilm and downregulating QS gene expression to reduce the bacterial resistance, providing a direction for the development of novel antibacterial drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wang YN et al (2019) Chronic kidney disease: biomarker diagnosis to therapeutic targets. Clin Chimica Acta 499:54–63. https://doi.org/10.1016/j.cca.2019.08.030

    Article  CAS  Google Scholar 

  2. Szeto CC, Li PK (2019) Peritoneal dialysis-associated peritonitis. Clin J Am Soc Nephrol 14(7):1100–1105. https://doi.org/10.2215/CJN.14631218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Zeng Y, Jiang L, Lu Y, Wang Z, Song K, Shen H, Feng S (2021) Peritoneal dialysis-related peritonitis caused by gram-negative organisms: ten-years experience in a single center. Ren Fail 43(1):993–1003. https://doi.org/10.1080/0886022X.2021.1939050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. An YL, Ooi GS, Vaithilingam I (2021) Factors predicting clinical outcomes of continuous ambulatory peritoneal dialysis associated peritonitis—a single centre study. Med J Malaysia 76(3):382–389

    Google Scholar 

  5. Christaki E, Marcou M, Tofarides A (2020) Antimicrobial resistance in bacteria: mechanisms, evolution, and persistence. J Mol Evol 88(1):26–40. https://doi.org/10.1007/s00239-019-09914-3

    Article  PubMed  CAS  Google Scholar 

  6. Azimi S, Klementiev AD, Whiteley M et al (2020) Bacterial quorum sensing during infection. Annu Rev Microbiol 8(74):201–219. https://doi.org/10.1146/annurev-micro-032020-093845

    Article  CAS  Google Scholar 

  7. Azam MW, Khan AU (2019) Updates on the pathogenicity status of Pseudomonas aeruginosa. Drug Discov Today 24(1):350–359. https://doi.org/10.1016/j.drudis.2018.07.003

    Article  PubMed  CAS  Google Scholar 

  8. Xu G (2020) Evolution of LuxR solos in bacterial communication: receptors and signals. Biotech Lett 42(2):181–186. https://doi.org/10.1007/s10529-019-02763-6

    Article  CAS  Google Scholar 

  9. Wang Y, Liu B, Grenier D, Yi L (2019) Regulatory Mechanisms of the LuxS/AI-2 system and bacterial resistance. Antimicrob Agents Chemother 63(10):e01186-e1219. https://doi.org/10.1128/AAC.01186-19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Torres-Cerna CE, Morales JA, Hernandez-Vargas EA (2019) Modeling quorum sensing dynamics and interference on Escherichia coli[J]. Front Microbiol 10:1835. https://doi.org/10.3389/fmicb.2019.01835

    Article  PubMed  PubMed Central  Google Scholar 

  11. Quan Y et al (2017) Regulation of bacteria population behaviors by AI-2 “consumer cells” and “supplier cells.” BMC Microbiol 17(1):198. https://doi.org/10.1186/s12866-017-1107-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Proctor CR, McCarron PA, Ternan NG (2020) Furanone quorum-sensing inhibitors with potential as novel therapeutics against Pseudomonas aeruginosa. J Med Microbiol 69(2):195–206. https://doi.org/10.1099/jmm.0.001144

    Article  PubMed  CAS  Google Scholar 

  13. Vinothkannan R, Tamizh MM, Raj CD et al (2018) Fructose furoic acid ester: an effective quorum sensing inhibitor against uropathogenic Escherichia coli[J]. Bioorg Chem 79:310–318. https://doi.org/10.1016/j.bioorg.2018.05.009

    Article  PubMed  CAS  Google Scholar 

  14. He Z, Kong X, Shao T et al (2019) Alterations of the gut microbiota associated with promoting efficacy of prednisone by bromofuranone in MRL/lpr mice[J]. Front Microbiol 10:978. https://doi.org/10.3389/fmicb.2019.00978

    Article  PubMed  PubMed Central  Google Scholar 

  15. Han T, Li Y, Shan Q, Liang W, Hao W, Li Y, Tan X, Gu J (2017) Characterization of S-adenosylhomocysteine/Methylthioadenosine nucleosidase on secretion of AI-2 and biofilm formation of Escherichia coli. Microb Pathog 108:78–84. https://doi.org/10.1016/j.micpath.2017.05.015

    Article  PubMed  CAS  Google Scholar 

  16. Husain A, Alam MM, Shaharyar M et al (2010) Antimicrobial activities of some synthetic butenolides and their pyrrolone derivatives[J]. J Enzyme Inhib Med Chem 25(1):54–61. https://doi.org/10.3109/14756360902940860

    Article  PubMed  CAS  Google Scholar 

  17. Horký P, Voráčová M, Konečná K, Sedlák D, Bartůněk P, Vacek J, Kuneš J, Pour M (2018) Nontoxic combretafuranone analogues with high in vitro antibacterial activity. Eur J Med Chem 143:843–853. https://doi.org/10.1016/j.ejmech.2017.11.078

    Article  PubMed  CAS  Google Scholar 

  18. Markus V, Golberg K, Teralı K, Ozer N, Kramarsky-Winter E, Marks RS, Kushmaro A (2021) Assessing the molecular targets and mode of action of furanone C-30 on Pseudomonas aeruginosa quorum sensing. Molecules 26(6):1620. https://doi.org/10.3390/molecules26061620

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Chang Y, Wang PC et al (2019) Design, synthesis and evaluation of halogenated furanone derivatives as quorum sensing inhibitors in Pseudomonas aeruginosa. Eur J Pharm Sci 140:105058. https://doi.org/10.1016/j.ejps.2019.105058

    Article  PubMed  CAS  Google Scholar 

  20. Sharafutdinov IS, Ozhegov GD et al (2020) Increasing susceptibility of drug-resistant candida albicans to fluconazole and terbinafine by 2(5H)-Furanone derivative. Molecules 25(3):642. https://doi.org/10.3390/molecules25030642

    Article  PubMed Central  CAS  Google Scholar 

  21. Sharafutdinov IS, Trizna EY et al (2017) Antimicrobial effects of sulfonyl derivative of 2(5H)-furanone against planktonic and biofilm associated methicillin-resistant and -susceptible Staphylococcus aureus. Front Microbiol 8:2246. https://doi.org/10.3389/fmicb.2017.02246

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cheng Y, Zhao X, Liu X, Sun W, Ren H, Gao B, Wu J (2015) Antibacterial activity and biological performance of a novel antibacterial coating containing a halogenated furanone compound loaded poly(L-lactic acid) nanoparticles on microarc-oxidized titanium. Int J Nanomedicine 10:727–737. https://doi.org/10.2147/IJN.S75706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Park JS, Ryu EJ, Li L, Choi BK, Kim BM (2017) New bicyclic brominated furanones as potent autoinducer-2 quorum-sensing inhibitors against bacterial biofilm formation. Eur J Med Chem 137:76–87. https://doi.org/10.1016/j.ejmech.2017.05.037

    Article  PubMed  CAS  Google Scholar 

  24. Husain A, Khan SA, Iram F et al (2019) Insights into the chemistry and therapeutic potential of furanones: a versatile pharmacophore[J]. Eur J Med Chem 171:66–92. https://doi.org/10.1016/j.ejmech.2019.03.021

    Article  PubMed  CAS  Google Scholar 

  25. Teren M, Turonova Michova H, Vondrakova L, Demnerova K (2018) Molecules Autoinducer 2 and cjA and Their Impact on gene expression in Campylobacter jejuni. J Mol Microbiol Biotechnol 28(5):207–215. https://doi.org/10.1159/000495411

    Article  PubMed  CAS  Google Scholar 

  26. Ren D, Bedzyk LA, Ye RW, Thomas SM, Wood TK (2004) Differential gene expression shows natural brominated furanones interfere with the autoinducer-2 bacterial signaling system of Escherichia coli. Biotechnol Bioeng 88(5):630–642. https://doi.org/10.1002/bit.20259

    Article  PubMed  CAS  Google Scholar 

  27. Wang Y, Wang Y, Sun L, Grenier D, Yi L (2018) The LuxS/AI-2 system of Streptococcus suis. Appl Microbiol Biotechnol 102(17):7231–7238. https://doi.org/10.1007/s00253-018-9170-7

    Article  PubMed  CAS  Google Scholar 

  28. Li T, HU SM, et al (2020) The marine-derived furanone reduces intracellular lipid accumulation in vitro by targeting LXRα and PPARα[J]. J Cell Mol Med 24(6):3384–3398. https://doi.org/10.1111/jcmm.15012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Cheng Y et al (2021) Long-term antibacterial activity of a composite coating on titanium for dental implant application. J Biomater Appl 35(6):643–654. https://doi.org/10.1177/0885328220963934

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Han Jiahui at The First Affiliated Hospital of Guangxi Medical University for his help in analyzing the data. Thanks to teacher Zhen from Guangxi Medical University for helping us with the electron microscope.

Funding

This study was supported by the Natural Science Fund of Guangxi, P.R (2018GXNSFAA050084).

Author information

Authors and Affiliations

Authors

Contributions

Dr. Wang designed and organized the study and revised the manuscript. Dr. Li and Dr. Wei established the in vitro static biofilm model, detected carrier biofilms by SEM, identified biofilms by crystal violet staining, detected luxS gene expression by RT–PCR, analyzed the data, and drafted the manuscript. Dr. Song and Dr. Li critically revised the manuscript. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Chengyu Wang.

Ethics declarations

Conflict of interest

All authors declared that they have no confict of interest.

Ethical Approval

This study was approved by the Ethics Committee of the First Affiliated Hospital of Guangxi Medical University[Approval Number: NO.2022-KY-E-(059)], Nanning, China.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 649 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wei, X., Song, Y. et al. In Vitro Study of the Effect of Inhibition of Quorum Sensing by Brominated Furanone on Peritoneal Dialysis-Associated Peritonitis Associated with Escherichia Coli Infection. Curr Microbiol 79, 337 (2022). https://doi.org/10.1007/s00284-022-03040-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-03040-y

Navigation