Skip to main content
Log in

Porostereum spadiceum-AGH786 Regulates the Growth and Metabolites Production in Triticum aestivum L. Under Salt Stress

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

The role of the most fungal endophytes in the host plant growth and production of metabolites under stress conditions is still unknown. Fungal endophytes occur in almost all plants to benefit the host plants exposed to biotic and abiotic stress. In the present work, we investigated salt (NaCl) stress alleviation capability of a fungal endophyte (Porostereum spadiceum-AGH786). The culture filtrate (CF: 1.5 mL.) of P. spadiceum-AGH786 contained IAA (158 µg/ml), SA (29.3 µg/ml), proline (114.6 µg/ml), phenols (167.4 µg/ml), lipids (71.4 µg/ml), sugar (133.2 µg/ml), flavonoids (105.04 µg/ml). Smaller amounts of organic acids, such as butyric acid (5.8 µg/ml), formic acid (2.34 µg/ml), succinic acid (2.02 µg/ml), and quinic acid (2.25 µg/ml) were also found in CF of P. spadiceum-AGH786. Similarly, the CF displayed antioxidant activity in 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-Azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays. Moreover, wheat plants colonized by P. spadiceum-AGH786 showed significantly (P = 0.05) higher polyphenol oxidases activity (2.2 mg/g DW) under normal conditions as compared to the NaCl-treated plants. We also observed that P. spadiceum-AGH786 improved biomass (0.30 g) of wheat plants subjected to 140 mM NaCl stress. The results conclude that the wheat plant colonization by P. spadiceum-AGH786 greatly improved the plant growth under 70 mM and 140 mM NaCl stress. Thus, the biomass of the P. Spadiceum-AGH786 can be used in saline soil to help the host plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during current study are available from the corresponding author.

References

  1. Khan MA, Ullah I, Waqas M, Hamayun M, Khan AL, Asaf S, Kang S-M, Kim K-M, Jan R, Lee I-J (2019) Halo-tolerant rhizospheric Arthrobacter woluwensis AK1 mitigates salt stress and induces physio-hormonal changes and expression of GmST1 and GmLAX3 in soybean. Symbiosis 77:9–21

    Article  CAS  Google Scholar 

  2. Khan MA, Asaf S, Khan AL, Ullah I, Ali S, Kang S-M, Lee I-J (2019) Alleviation of salt stress response in soybean plants with the endophytic bacterial isolate Curtobacterium sp. SAK1. Ann Microbiol 69:797–808

    Article  CAS  Google Scholar 

  3. Khan MA, Asaf S, Khan AL, Jan R, Kang S-M, Kim K-M, Lee I-J (2019) Rhizobacteria AK1 remediates the toxic effects of salinity stress via regulation of endogenous phytohormones and gene expression in soybean. Biochem J 476:2393–2409

    Article  CAS  PubMed  Google Scholar 

  4. Khushdil F, Jan FG, Jan G, Hamayun M, Iqbal A, Hussain A, Bibi N (2019) Salt stress alleviation in Pennisetum glaucum through secondary metabolites modulation by Aspergillus terreus. Plant Physiol Biochem 144:127–134

    Article  CAS  PubMed  Google Scholar 

  5. Muhammad I, Niaz A, Gul J, Amjad I, Muhammad H, Farzana GJ, Anwar H, In-Jung L (2019) Trichoderma reesei improved the nutrition status of wheat crop under salt stress. J Plant Interact 14:590–602

    Article  CAS  Google Scholar 

  6. Nusrat B, Gul J, Farzana GJ, Muhammad H, Amjad I, Anwar H, Hazir R, Abdul T, Faiza K (2019) Cochliobolus sp. acts as a biochemical modulator to alleviate salinity stress in okra plants. Plant Physiol Biochem 139:459–469

    Article  CAS  Google Scholar 

  7. Jia M, Chen L, Xin H-L, Zheng C-J, Rahman K, Han T, Qin L-P (2016) A friendly relationship between endophytic fungi and medicinal plants: a systematic review. Front Microbiol 7:906

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ismail HM, Hussain A, Afzal KS, Iqbal A, Lee I-J (2019) Aspergillus flavus promoted the growth of soybean and sunflower seedlings at elevated temperature. Biomed Res Int 2019:1–13

    Google Scholar 

  9. Arnold A (2008) Hidden within our botanical richness, a treasure trove of fungal endophytes. Plant Press 32:13–15

    Google Scholar 

  10. Ali S, Khan SA, Hamayun M, Iqbal A, Khan AL, Hussain A, Shah M (2019) Endophytic fungi from Caralluma acutangula can secrete plant growth promoting enzymes. Fresenius Environ Bull 28:2688–2696

    CAS  Google Scholar 

  11. Ali S, Khan AL, Ali L, Rizvi TS, Khan SA, Hussain J, Hamayun M, Al-Harrasi A (2017) Enzyme inhibitory metabolites from endophytic Penicillium citrinum isolated from Boswellia sacra. Arch Microbiol 199:691–700

    Article  CAS  PubMed  Google Scholar 

  12. Husna AH, Mohib S, Muhammad H, Muhammad Q, Amjad I (2021) Heavy metal tolerant endophytic fungi Aspergillus welwitschiae improves growth, ceasing metal uptake and strengthening antioxidant system in Glycine max L. Environ Sci Pollut Res 29:15501

    Article  CAS  Google Scholar 

  13. Ismail MH, Hussain A, Iqbal A, Khan SA, Khan MA, Lee I-J (2021) An endophytic fungus Gliocladium cibotii regulates metabolic and antioxidant system of Glycine max and Helianthus annuus under heat stress. Pol J Environ Stud 30:1–10

    Article  Google Scholar 

  14. Raid A, Humaira G, Muhammad H, Mamoona R, Amjad I, Mohib S, Anwar H, Hamida B, In-Jung L (2021) Aspergillus awamori ameliorates the physicochemical characteristics and mineral profile of mung bean under salt stress. Chem Biol Technol Agric 8:1–13

    CAS  Google Scholar 

  15. Aziz L, Hamayun M, Rauf M, Iqbal A, Arif M, Husssin A, Khan SA (2021) Endophytic Aspergillus niger reprograms the physicochemical traits of tomato under cadmium and chromium stress. Environ Exp Botany 186:104456

    Article  CAS  Google Scholar 

  16. Hamayun M, Hussain A, Iqbal A, Khan SA, Ahmad A, Gul S, Kim H-Y, Lee I-J (2021) Aspergillus foetidus regulated the biochemical characteristics of soybean and sunflower under heat stress condition: role in sustainability. Sustainability 13:7159

    Article  CAS  Google Scholar 

  17. Hamayun M, Khan N, Khan MN, Qadir M, Hussain A, Iqbal A, Khan SA, Rehman KU, Lee I-J (2021) Antimicrobial and plant growth-promoting activities of bacterial endophytes isolated from Calotropis procera (Ait.) WT Aiton. Biocell 45:363–369

    Article  CAS  Google Scholar 

  18. Qadir M, Hussain A, Shah M, Lee IJ, Iqbal A, Irshad M, Sayyed A, Ahmad A, Hamayun M (2021) Comparative assessment of chromate bioremediation potential of Pantoea conspicua and Aspergillus niger. J Hazard Mater 424:1–18

    Google Scholar 

  19. Bilal L, Asaf S, Hamayun M, Gul H, Iqbal A, Ullah I, Lee I-J, Hussain A (2018) Plant growth promoting endophytic fungi Asprgillus fumigatus TS1 and Fusarium proliferatum BRL1 produce gibberellins and regulates plant endogenous hormones. Symbiosis 76:117–127

    Article  CAS  Google Scholar 

  20. Muhammad I, Ali N, Jan G, Jan FG, Rahman IU, Iqbal A, Hamayun M (2018) IAA producing fungal endophyte Penicillium roqueforti Thom., enhances stress tolerance and nutrients uptake in wheat plants grown on heavy metal contaminated soils. PLoS ONE 13:e0208150

    Article  CAS  Google Scholar 

  21. Gul JF, Hamayun M, Hussain A, Iqbal A, Jan G, Khan SA, Khan H, Lee I-J (2019) A promising growth promoting Meyerozyma caribbica from Solanum xanthocarpum alleviated stress in maize plants. Biosci Rep 39:1–15

    Google Scholar 

  22. Jan FG, Hamayun M, Hussain A, Jan G, Iqbal A, Khan A, Lee I-J (2019) An endophytic isolate of the fungus Yarrowia lipolytica produces metabolites that ameliorate the negative impact of salt stress on the physiology of maize. BMC Microbiol 19:3

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hamayun M, Hussain A, Khan SA, Kim H-Y, Khan AL, Waqas M, Irshad M, Iqbal A, Rehman G, Jan S (2017) Gibberellins producing endophytic fungus Porostereum spadiceum AGH786 rescues growth of salt affected soybean. Front Microbiol 8:686

    Article  PubMed  PubMed Central  Google Scholar 

  24. Khan MA, Sahile AA, Jan R, Asaf S, Hamayun M, Imran M, Adhikari A, Kang S-M, Kim K-M, Lee I-J (2021) Halotolerant bacteria mitigate the effects of salinity stress on soybean growth by regulating secondary metabolites and molecular responses. BMC Plant Biol 21:176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sahile AA, Khan MA, Hamayun M, Imran M, Kang S-M, Lee I-J (2021) Novel Bacillus cereus strain, ALT1, enhance growth and strengthens the antioxidant system of soybean under cadmium stress. Agronomy 11:404

    Article  CAS  Google Scholar 

  26. Khan N, Bano A, Babar MA (2017) The root growth of wheat plants, the water conservation and fertility status of sandy soils influenced by plant growth promoting rhizobacteria. Symbiosis 72:195–205

    Article  CAS  Google Scholar 

  27. Van Handel E (1985) Rapid determination of total lipids in mosquitoes. J Am Mosq Control Assoc 1:302–304

    PubMed  Google Scholar 

  28. Song J-J, Smith SK, Hannon GJ, Joshua-Tor L (2004) Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305:1434–1437

    Article  CAS  PubMed  Google Scholar 

  29. Bates LS, Waldren RP, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  30. Warrier R, Paul M, Vineetha M (2013) Estimation of salicylic acid in Eucalyptus leaves using spectrophotometric methods. Genet Plant Physiol 3:90–97

    Google Scholar 

  31. Hoffman MT, Gunatilaka MK, Wijeratne K, Gunatilaka L, Arnold AE (2013) Endohyphal bacterium enhances production of indole-3-acetic acid by a foliar fungal endophyte. PLoS ONE 8:e73132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Khan MA, Asaf S, Khan AL, Jan R, Kang S-M, Kim K-M, Lee I-J (2020) Thermotolerance effect of plant growth-promoting Bacillus cereus SA1 on soybean during heat stress. BMC Microbiol 20:175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kang S-M, Shahzad R, Khan MA, Hasnain Z, Lee K-E, Park H-S, Kim L-R, Lee I-J (2021) Ameliorative effect of indole-3-acetic acid- and siderophore-producing Leclercia adecarboxylata MO1 on cucumber plants under zinc stress. J Plant Interact 16:30–41

    Article  CAS  Google Scholar 

  34. Jan R, Khan MA, Asaf S, Lubna L-J, Kim KM (2019) Metal resistant endophytic bacteria reduces cadmium, nickel toxicity, and enhances expression of metal stress related genes with improved growth of Oryza sativa, via regulating its antioxidant machinery and endogenous hormones. Plants 8:363

    Article  CAS  PubMed Central  Google Scholar 

  35. Kubi HAA, Khan MA, Adhikari A, Imran M, Kang S-M, Hamayun M, Lee I-J (2021) Silicon and plant growth-promoting rhizobacteria Pseudomonas psychrotolerans CS51 mitigates salt stress in Zea mays L. Agriculture 11:272

    Article  CAS  Google Scholar 

  36. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  37. Kang S-M, Khan A, Waqas M, You Y-H, Kim J-H, Kim J-G, Hamayun M, Lee I-J (2014) Plant Growth Promoting Rhizobacterias reduces adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J Plant Interact 9:673

    Article  CAS  Google Scholar 

  38. Giraldo P, Benavente E, Manzano-Agugliaro F, Gimenez E (2019) Worldwide research trends on wheat and barley: a bibliometric comparative analysis. Agronomy 9:352

    Article  Google Scholar 

  39. Miransari M (2011) Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv 29:645–653

    Article  CAS  PubMed  Google Scholar 

  40. Miransari M, Smith D (2019) Sustainable wheat (Triticum aestivum L.) production in saline fields: a review. Crit Rev Biotechnol 39:999–1014

    Article  CAS  PubMed  Google Scholar 

  41. Hamayun M, Hussain A, Khan SA, Kim H-Y, Khan AL, Waqas M, Irshad M, Iqbal A, Rehman G, Jan S, Lee I-J (2017) Gibberellins producing endophytic fungus Porostereum spadiceum AGH786 rescues growth of salt affected soybean. Front Microbiol 8:5. https://doi.org/10.3389/fmicb.2017.00686

    Article  Google Scholar 

  42. Hussain A, Shah ST, Rahman H, Irshad M, Iqbal A (2015) Effect of IAA on in vitro growth and colonization of Nostoc in plant roots. Front Plant Sci 6:46

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mehmood A, Hussain A, Irshad M, Hamayun M, Iqbal A, Rahman H, Tawab A, Ahmad A, Ayaz S (2019) Cinnamic acid as an inhibitor of growth, flavonoids exudation and endophytic fungus colonization in maize root. Plant Physiol Biochem 135:61–68

    Article  CAS  PubMed  Google Scholar 

  44. Deng Z, Cao L (2017) Fungal endophytes and their interactions with plants in phytoremediation: a review. Chemosphere 168:1100–1106

    Article  CAS  PubMed  Google Scholar 

  45. Shahid M, Pervez MA, Balal R, Ahmad R, Ayyub CM, Abbas T, Akhtar N (2011) Salt stress effects on some morphological and physiological characteristics of okra (Abelmoschus esculentus L.). Soil Environ 30:66–73

    CAS  Google Scholar 

  46. Akram M, Mohsan AMY, Ahmad R, Waraich EA (2010) Screening for salt tolerance in maize (Zea mays L.) hybrids at an early seedling stage. Pak J Bot 42:141–153

    CAS  Google Scholar 

  47. Feng F, Zhang F, Yang X (2000) Plant nutriology-advances and prospects. China Agricultural University Press, Beijing

    Google Scholar 

  48. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  49. Gao Q-M, Zhu S, Kachroo P, Kachroo A (2015) Signal regulators of systemic acquired resistance. Front Plant Sci. https://doi.org/10.3389/fpls.2015.00228

    Article  PubMed  PubMed Central  Google Scholar 

  50. Sharma A, Shahzad B, Kumar V, Kohli SK, Sidhu GPS, Bali AS, Handa N, Kapoor D, Bhardwaj R, Zheng B (2019) Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules 9:285

    Article  CAS  PubMed Central  Google Scholar 

  51. Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7:1456–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Imlay JA (2003) Pathways of oxidative damage. Ann Rev Microbiol 57:395–418

    Article  CAS  Google Scholar 

  53. Kohler J, Hernández JA, Caravaca F, Roldán A (2009) Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environ Exp Bot 65:245–252

    Article  CAS  Google Scholar 

  54. Asaf S, Hamayun M, Khan AL, Waqas M, Khan MA, Jan R, Lee I-J, Hussain A (2018) Salt tolerance of Glycine max. L induced by endophytic fungus Aspergillus flavus CSH1, via regulating its endogenous hormones and antioxidative system. Plant Physiol Biochem 128:13–23

    Article  PubMed  CAS  Google Scholar 

  55. Gupta S, Schillaci M, Walker R, Smith PM, Watt M, Roessner U (2021) Alleviation of salinity stress in plants by endophytic plant-fungal symbiosis: current knowledge, perspectives and future directions. Plant Soil 461:219–244

    Article  CAS  Google Scholar 

  56. Abdelaziz ME, Kim D, Ali S, Fedoroff NV, Al-Babili S (2017) The endophytic fungus Piriformospora indica enhances Arabidopsis thaliana growth and modulates Na+/K+ homeostasis under salt stress conditions. Plant Sci 263:107–115

    Article  CAS  PubMed  Google Scholar 

  57. Qadir M, Ghafoor A, Murtaza G (2000) Amelioration strategies for saline soils: a review. Land Degrad Dev 11(6):501–521

    Article  Google Scholar 

  58. Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218(1):1–14

    Article  CAS  PubMed  Google Scholar 

  59. Çullu MA (2003) Estimation of the effect of soil salinity on crop yield using remote sensing and geographic information system. Turk J Agric For 27(1):23–28

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Plant-Microbe Interactions Laboratory of the Department of Botany, Abdul Wali Khan University Mardan for providing the endophytic fungus and lab facilities.

Funding

The authors have no financial conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Contributions

The study concept and design were performed by MH, AH, SA, SAK, MS; The experiments and data analysis were performed by SLG, AI, SA, and MAK; The manuscript drafting was performed by SA, YSM, and MH; AI and MH revised the draft manuscript; all authors approved the final draft of manuscript.

Corresponding authors

Correspondence to Muhammad Hamayun or Sajid Ali.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

284_2022_2853_MOESM1_ESM.tif

Supplementary file1 (TIF 80 kb) Supp. Figure 1: (A) Pure culture of P. spadiceum AGH786 (B) Siderophore production in solid medium by endophytic P. spadiceum AGH786.

284_2022_2853_MOESM2_ESM.tif

Supplementary file2 (TIF 6041 kb) Supp. Figure 2: Effect of P. spadiceum AGH786 on wheat growth under elevated NaCl stress

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gul, S.L., Moon, YS., Hamayun, M. et al. Porostereum spadiceum-AGH786 Regulates the Growth and Metabolites Production in Triticum aestivum L. Under Salt Stress. Curr Microbiol 79, 159 (2022). https://doi.org/10.1007/s00284-022-02853-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-02853-1

Navigation