Skip to main content
Log in

RNA-Seq Transcriptomic Analysis of Green Tea Polyphenols Modulation of Differently Expressed Genes in Enterococcus faecalis Under Bile Salt Stress

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Enterococcus faecalis (E. faecalis) belongs to lactic acid bacteria which can be used as a probiotic additive and feed, bringing practical value to the health of humans and animals. The prebiotic function of tea polyphenols lays a foundation for green tea polyphenols (GTP) to repair the adverse changes of E. faecalis under stress conditions. In this study, RNA-sequence analysis was used to explore the protective effect of GTP on E. faecalis under bile salt stress. A total of 50 genes were found to respond to GTP under bile salts stress, containing 18 up-regulated and 32 down-regulated genes. The results showed that multiple genes associated with cell wall and membrane, transmembrane transport, nucleotide transport and metabolism were significantly differentially expressed (P < 0.05), while GTP intervention can partly alleviate the detrimental effects of bile salt on amino acid metabolism and transport. The present study provides the whole genome transcriptomics of E. faecalis under bile salt stress and GTP intervention which help us understand the growth and mechanism of continuous adaptation of E. faecalis under stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The authors confirm that all data generated or analyzed during this study are included in this published article [and its supplementary information files]. The NCBI BioProject is PRJNA796179 [Transcriptome sequencing of Enterococcus faecalis].

Abbreviations

E. faecalis :

Enterococcus faecalis

E. faecalis 131-2:

Enterococcus faecalis131-2

GTP:

Green tea polyphenols

GO:

Gene ontology

KEGG:

Kyoto encyclopedia of genes and genomes

SEM:

Scanning electron microscopy

DEGs:

Differentially expressed genes

References

  1. Salze M, Giard JC, Riboulet BE, Hain T, Cécile M (2019) Identification of the general stress stimulon related to colonization in Enterococcus faecalis. Arch Microbiol 202:233–246

    Article  PubMed  Google Scholar 

  2. Li P, Niu Q, Wei Q, Zhang Y, Ma X, Kim SW, Lin M, Huang R (2017) Microbial shifts in the porcine distal gut in response to diets supplemented with Enterococcus faecalis as alternatives to antibiotics. Sci Rep 7:1–10

    Article  Google Scholar 

  3. Shehata AA, Tarabees R, Basiouni S, Elsayed MS, Gaballah A, Krueger M (2020) Effect of a potential probiotic candidate Enterococcus faecalis-1 on growth performance, intestinal microbiota, and immune response of commercial broiler chickens. Probiotics Antimicro 12:451–460

    Article  CAS  Google Scholar 

  4. Zhu Y, Li T, Din AU, Hassan A, Wang Y, Wang G (2019) Beneficial effects of Enterococcus faecalis in hypercholesterolemic mice on cholesterol transportation and gut microbiota. Appl Microbiol Biotechnol 103:3181–3191

    Article  CAS  PubMed  Google Scholar 

  5. Franz CM, Huch M, Abriouel H, Holzapfel W, Gálvez A (2011) Enterococci as probiotics and their implications in food safety. Int J Food Microbiol 151:125–140

    Article  CAS  PubMed  Google Scholar 

  6. Lindenstrauß AG, Ehrmann MA, Behr J, Landstorfer R, Haller D, Sartor RB, Vogel RF (2014) Transcriptome analysis of Enterococcus faecalis toward its adaption to surviving in the mouse intestinal tract. Arch Microbiol 196:423–433

    Article  PubMed  Google Scholar 

  7. Monagas M, Urpi SM, Sánchez PF, Llorach R, Garrido I, Gómez C, Andres C, Bartolomé B (2010) Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites. Food Funct 1:233–253

    Article  CAS  PubMed  Google Scholar 

  8. İspirli H, Demirbaş F, Dertli E (2015) Characterization of functional properties of Enterococcus faecium strains isolated from human gut. Can J Microbiol 61:861–870

    Article  PubMed  Google Scholar 

  9. Banerjee A, Dhar P (2019) Amalgamation of polyphenols and probiotics induce health promotion. Crit Rev Food Sci Nutr 59:2903–2926

    Article  CAS  PubMed  Google Scholar 

  10. López de Lacey AM, Pérez-Santín E, López-Caballero ME, Montero P (2014) Biotransformation and resulting biological properties of green tea polyphenols produced by probiotic bacteria. LWT Food Sci Technol 58:633–638

    Article  Google Scholar 

  11. Macedo JA, Battestin V, Ribeiro ML, Macedo GA (2011) Increasing the antioxidant power of tea extracts by biotransformation of polyphenols. Food Chem 126:491–497

    Article  CAS  Google Scholar 

  12. Liu X, Li J, Yang Y, Chen X (2012) Exposure of Pseudomonas aeruginosa to green tea polyphenols enhances the tolerance to various environmental stresses. World J Microbiol Biotechnol 28:3373–3380

    Article  CAS  PubMed  Google Scholar 

  13. De Souza EL, De Albuquerque TMR, Dos Santos AS, Massa NML, de Brito Alves JL (2019) Potential interactions among phenolic compounds and probiotics for mutual boosting of their health-promoting properties and food functionalities-a review. Crit Rev Food Sci Nutr 59:1645–1659

    Article  PubMed  Google Scholar 

  14. Cheng L, Zhang X, Zheng XJ, Wu ZF, Weng PF (2019) RNA-seq transcriptomic analysis of green tea polyphenols regulation of differently expressed genes in Saccharomyces cerevisiae under ethanol stress. World J Microbiol Biotechnol 35:59

    Article  PubMed  Google Scholar 

  15. Guo XJ, Cheng M, Zhang X, Cao JX, Wu ZF, Weng PF (2017) Green tea polyphenols reduce obesity in high-fat diet-induced mice by modulating intestinal microbiota composition. Int J Food Sci Tech 52:1723–1730

    Article  CAS  Google Scholar 

  16. Zhang XL, de Maat Vd, Prieto AMG, Prajsnar TK, Bayjanov JR, Been Md, Rogers MRC, Bonten MJM, Mesnage S, Willems RJL (2017) RNA-seq and Tn-seq reveal fitness determinants of vancomycin-resistant Enterococcus faecium during growth in human serum. BMC Genomics 18:893

    Article  PubMed  PubMed Central  Google Scholar 

  17. Solheim M, La Rosa SLL, Mathisen T, Snipen LG, Nes IF, Brede DA (2014) Transcriptomic and functional analysis of NaCl-induced stress in Enterococcus faecalis. PLoS ONE 9:e94571

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lee JY, Pajarillo AB, Kim MJ, Chae JP, Kang DK (2012) Proteomic and transcriptional analysis of Lactobacillus johnsonii PF01 during bile salt exposure by iTRAQ shotgun proteomics and quantitative RT-PCR. J Proteome Res 12:432–443

    Article  PubMed  Google Scholar 

  19. Chen YH, Cheng L, Zhang X, Cao JX, Wu ZF, Zheng XJ (2019) Transcriptomic and proteomic effects of (-)-epigallocatechin 3-O-(3-O-methyl) gallate (EGCG3”Me) treatment on ethanol-stressed Saccharomyces cerevisiae cells. Food Res Int 119:67–75

    Article  CAS  PubMed  Google Scholar 

  20. Zheng XD, Boyer L, Jin MJ, Mertens J, Kim Y, Ma L, Hamm M, Gage FH, Hunter T (2016) Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation. Elife 5:e13374

    Article  PubMed  PubMed Central  Google Scholar 

  21. Elgendy M, Cirò M, Hosseini A, Weiszmann J, Mazzarella L, Ferrari E, Cazzoli R, Curigliano G, DeCensi A, Bonanni B, Budillon A, Pelicci PG, Janssens V, Ogris M, Baccarini M, Lanfrancone L, Weckwerth W, Foiani M, Minucci S (2019) Combination of hypoglycemia and metformin impairs tumor metabolic plasticity and growth by modulating the PP2A-GSK3β-MCL-1 axis. Cancer Cell 35(5):798-815.e5

    Article  CAS  PubMed  Google Scholar 

  22. Dramsi S, Bierne H (2017) Spatial organization of cell wall-anchored proteins at the surface of gram-positive bacteria. Curr Top Microbiol Immunol 404:177–201

    CAS  PubMed  Google Scholar 

  23. Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2:a000414

    Article  PubMed  PubMed Central  Google Scholar 

  24. Foot N, Henshall T, Kumar S (2017) Ubiquitination and the regulation of membrane proteins. Physiol Rev 97:253–281

    Article  PubMed  Google Scholar 

  25. Giard JC, Laplace JM, Rincé A, Pichereau V, Benachour A, Leboeuf C, Flahaut S, Auffray Y, Hartke A (2001) The stress proteome of Enterococcus faecalis. Electrophoresis 22:2947–2954

    Article  CAS  PubMed  Google Scholar 

  26. Wang F, Wu H, Jin P, Sun Z, Liu F, Du L, Wang D, Xu W (2018) Antimicrobial activity of phenyllactic acid against Enterococcus faecalis and its effect on cell membrane. Foodborne Pathog Dis 15:645–652

    Article  CAS  PubMed  Google Scholar 

  27. Urdaneta V, Casadesús J (2017) Interactions between bacteria and bile salts in the gastrointestinal and hepatobiliary tracts. Front Med 4:163

    Article  Google Scholar 

  28. Chang L, Thompson AD, Ung P, Carlson HA, Gestwicki JE (2010) Mutagenesis reveals the complex relationships between ATPase rate and the chaperone activities of Escherichia coli heat shock protein 70 (Hsp70/DnaK). J Biol Chem 285:21282–21291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kvint K, Nachin L, Diez A, Nyström T (2003) The bacterial universal stress protein: function and regulation. Curr Opin Microbiol 6:140–145

    Article  CAS  PubMed  Google Scholar 

  30. Ferrándiz MJ, Cercenado MI, Domenech M, Tirado-Vélez JM, Escolano-Martínez MS, Yuste J, García E, de la Campa AG, Martín-Galiano AJ (2019) An uncharacterized member of the Gls24 protein superfamily is a putative sensor of essential amino acid availability in Streptococcus pneumoniae. Microb Ecol 77:471–487

    Article  PubMed  Google Scholar 

  31. Teng F, Nannini EC, Murray BE (2005) Importance of gls24 in virulence and stress response of Enterococcus faecalis and use of the Gls24 protein as a possible immunotherapy target. J Infect Dis 191:472–480

    Article  CAS  PubMed  Google Scholar 

  32. Paddon-Jones D, Rasmussen BB (2009) Dietary protein recommendations and the prevention of sarcopenia protein, amino acid metabolism and therapy. Curr Opin Clin Nutr Metab Care 12:86–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dawczynski C, Schubert R, Jahreis G (2007) Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chem 103:891–899

    Article  CAS  Google Scholar 

  34. Alomar J, Loubière P, Delbes C, Nouaille S, Montel MC (2008) Effect of Lactococcus garvieae, Lactococcus lactis and Enterococcus faecalis on the behaviour of Staphylococcus aureus in microfiltered milk. Food Microbiol 25:502–508

    Article  CAS  PubMed  Google Scholar 

  35. Deutscher J, Francke C, Postma PW (2006) How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 70:939–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pflüger-Grau K, Görke B (2010) Regulatory roles of the bacterial nitrogen-related phosphotransferase system. Trends Microbiol 18:205–214

    Article  PubMed  Google Scholar 

  37. Postma PW, Lengeler JW, Jacobson JR (1993) Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57:543–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yoshida M, Muneyuki E, Hisabori T (2001) ATP synthase-a marvellous rotary engine of the cell. Nat Rev Mol Cell Biol 2:669–677

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Fundamental Research Funds for the Central Universities (2020SKTY01), the National Natural Science Foundation of China (31650006), "Yueqi Young Scholars" Funding Program of China University of Mining and Technology (Beijing), and the Key Research and Development Project of Zhejiang Province (2018C02047).

Author information

Authors and Affiliations

Authors

Contributions

LZ and JX drafted the manuscript. LZ and ZZ analyzed the RNA sequencing data. LZ, ZW, and RY conducted the statistics study. All authors critically revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zufang Wu.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (JPG 332 KB)

Supplementary file2 (JPG 116 KB)

Supplementary file3 (JPG 63 KB)

Supplementary file4 (XLSX 11 KB)—Primer sequence of the representative RNA-seq DEGs

Supplementary file5 (XLSX 10 KB)—Mapping ratio statistics

Supplementary file6 (XLS 252 KB)—DEGs between the bile salt group and the control group

Supplementary file7 (XLS 37 KB)—DEGs between the bile salt-GTP and the bile salt group

Supplementary file8 (XLS 185 KB)—GO analysis of DEGs between the bile salt group and the control group

Supplementary file9 (XLS 5 KB)—GO analysis of DEGs between the bile salt-GTP group and the bile salt group

Supplementary file10 (XLSX 14 KB)—All genes between the bile salt-GTP group and the bile salt group

Supplementary file11 (XLS 21 KB)—KEGG analysis of DEGs between the bile salt group and the control group

Supplementary file12 (XLS 4 KB)—KEGG analysis of DEGs between the bile salt-GTP and the bile salt group

Supplementary file13 (XLS 203 KB)—All genes in the control group, the bile salt group, and the bile salt-GTP

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Xie, J., Zhang, Z. et al. RNA-Seq Transcriptomic Analysis of Green Tea Polyphenols Modulation of Differently Expressed Genes in Enterococcus faecalis Under Bile Salt Stress. Curr Microbiol 79, 147 (2022). https://doi.org/10.1007/s00284-022-02844-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-022-02844-2

Navigation