Skip to main content

Advertisement

Log in

Potential of Halophilic/Halotolerant Bacteria in Enhancing Plant Growth Under Salt Stress

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

In the current study, fourteen bacterial strains were obtained in salt contaminated soils. The identification and characterization of the bacterial strains were performed by conventional and molecular techniques. According to the results of 16S rRNA gene sequence analysis, five genera (Bacillus, Staphylococcus, Oceanobacillus, Exiguobacterium, and Halobacillus) were identified with a homology of equal to 99% or higher similarity. Afterward, these fourteen halotolerant/halophilic bacterial strains were investigated for their plant growth promoting (PGP) traits including production of indole-3-acetic acid (IAA) and siderophore, activity of 1-aminocyclopropane-1-carboxylate (ACC) deaminase, fixation of nitrogen, and phosphate solubilization potential. Five of the bacterial strains possessing PGP traits were tested for their effects on the growth of a salt sensitive plant (wheat) in a hydroponic system under salt stress (200 mM). Inoculation of five bacterial strains under salt stress significantly enhanced plant weight (Triticum aestivum) ranged from 71.18 to 89.04%. Salt stress amelioration potential of Oceanobacillus picturae and Staphylococcus succinus on T. aestivum has been shown for the first time in this study. In non-saline soil, the promising effect of plant growth bacteria is clear; however, in saline soil, the use of PGP halophilic and halotolerant bacteria can increase the productivity of salt sensitive plants. Therefore, the novel halophilic and halotolerant bacteria that promote plant growth can be developed for agricultural uses in saline soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169(1):30–39. https://doi.org/10.1016/j.micres.2013.09.009

    Article  CAS  PubMed  Google Scholar 

  2. COM E (2006) Communication from the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions-Thematic Strategy for Soil Protection [SEC (2006) 620] [SEC (2006) 1165]. COM/2006/0231 Final

  3. Singh KN, Chatrath R (2001) Salinity tolerance. In: Reynolds MP, Monasterio JIO, McNab A (eds) Application of physiology in wheat breeding. CIMMYT, Mexico, pp 101–110

    Google Scholar 

  4. Thenkabail PS (2010) Global croplands and their importance for water and food security in the twenty-first century: towards an ever green revolution that combines a second green revolution with a blue revolution. Remote Sens 2:2305–2312. https://doi.org/10.3390/rs2092305

    Article  Google Scholar 

  5. Shrivastava P, Kumar R (2015) Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci 22:123–131. https://doi.org/10.1016/j.sjbs.2014.12.001

    Article  CAS  PubMed  Google Scholar 

  6. Panta S, Flowers T, Lane P, Doyle R, Haros G, Shabala S (2014) Halophyte agriculture: success stories. Environ Exp Bot 107:71–83. https://doi.org/10.1016/j.envexpbot.2014.05.006

    Article  Google Scholar 

  7. Akbarimoghaddam H, Galavi M, Ghanbari A, Panjehkeh N (2011) Salinity effects on seed germination and seedling growth of bread wheat cultivars. Trakia J Sci 9(1):43–50

    Google Scholar 

  8. Netondo GW, Onyango JC, Beck E (2004) Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Sci 44(3):806–811. https://doi.org/10.2135/cropsci2004.8060

    Article  Google Scholar 

  9. Bano A, Fatima M (2009) Salt tolerance in Zea mays (L.) following inoculation with Rhizobium and Pseudomonas. Biol Fert Soils 45(4):405–413. https://doi.org/10.1007/s00374-008-0344-9

    Article  Google Scholar 

  10. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25(2):239–250. https://doi.org/10.1046/j.0016-8025.2001.00808.x

    Article  CAS  PubMed  Google Scholar 

  11. Dudley LM, Ben-Gal A, Lazarovitch N (2008) Drainage water reuse: biological, physical, and technological considerations for system management. J Environ Qual 37(5 Suppl):S25–S35. https://doi.org/10.2134/jeq2007.0314

    Article  CAS  PubMed  Google Scholar 

  12. Valipour M (2014) Drainage, waterlogging, and salinity. Arch Agron Soil Sci 60(12):1625–1640. https://doi.org/10.1080/03650340.2014.905676

    Article  Google Scholar 

  13. Yurtseven E, Kesmez G, Ünlükara A (2005) The effects of water salinity and potassium levels on yield, fruit quality and water consumption of a native central anatolian tomato species (Lycopersicon esculantum). Agric Water Manage 78(1–2):128–135. https://doi.org/10.1016/j.agwat.2005.04.018

    Article  Google Scholar 

  14. Raychev T, Popandova S, Józefaciuk G, Hajnos M, Sokolowska ZJIA (2001) Physicochemical reclamation of saline soils using coal powder. Int Agrophys 15(1):51–54

    Google Scholar 

  15. Aronson J (1989) Haloph, a data base of salt tolerant plants of the world. Office of Arid Land Studies. University of Arizona Press, Tucson

    Google Scholar 

  16. Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27(5):1231–1240. https://doi.org/10.1007/s11274-010-0572-7

    Article  Google Scholar 

  17. Kendirli B, Cakmak B, Ucar Y (2005) Salinity in the Southeastern Anatolia project (GAP), Turkey: issues and options. Irrig Drain 54(1):115–122

    Article  Google Scholar 

  18. Sönmez B (2011) Çorak Toprakların Islahı ve Yönetimi. Bilim ve Aklın Aydınlığında Eğitim 134:52–56

    Google Scholar 

  19. Atasoy A, Çeçen R (2014) Reyhanlı İlçesinde Tuzlanma Problemleri. Türk Coğrafya Dergisi 62:21–28

    Google Scholar 

  20. Koc LD, Kanber R (2020) Tuzlu-Sodyumlu Helvacı Serisi Topraklarının Tuzluluk ve Sodyumluluk Belirteçlerinin Değişimi. KSU J Agric Nat 23(4):1064–1077

    Google Scholar 

  21. Ventosa A, Quesada E, Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A (1982) Numerical taxonomy of moderately halophilic gram-negative rods. J Gen Microbiol 128(9):1959–1968. https://doi.org/10.1099/00221287-128-9-1959

    Article  Google Scholar 

  22. Mitra P, Chakrabartty PK (2005) An extracellular protease with depilation activity from Streptomyces nogalator. J Sci Ind Res 64:978–983. https://doi.org/10.4172/0974-276X.1000456

    Article  CAS  Google Scholar 

  23. Pranay K, Shree Ram P, Vijay J, Birendra P (2019) Screening and identification of amylase producing strains of Bacillus. J Appl Biol Biotechnol. https://doi.org/10.7324/JABB.2019.70409

    Article  Google Scholar 

  24. Atlas RM (2010) Handbook of Microbiological Media, 4th edn. CRC Press, Boca Raton

    Book  Google Scholar 

  25. Shigei J (1992) Test methods used in the identification of commonly isolated aerobic gram-negative bacteria. Oxidation-fermentation test. In: Isenberg HD (ed) Clinical microbiology procedures handbook, vol 1. mBio, Washington, pp 1.19.50-1.19.53

    Google Scholar 

  26. Saleh-Lakha S, Shannon KE, Goyer C, Trevors JT, Zebarth BJ, Burton DL (2008) Nitric oxide reductase gene expression and nitrous oxide production in nitrate-grown Pseudomonas mandelii. Appl Environ Microbiol 74:6876–6879. https://doi.org/10.1128/AEM.01533-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Heuer H, Krsek M, Baker P, Smalla K, Wellington EMH (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl Environ Microbiol 63:3233–3241

    Article  CAS  Google Scholar 

  28. Alexander DB, Zuberer DA (1991) Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol Fertil Soils 12:39–45. https://doi.org/10.1007/BF00369386

    Article  CAS  Google Scholar 

  29. Ehmann AJ (1977) The Van Urk-Salkowski reagent-a sensitive and specific chromogenic reagent for silica gel thin-layer chromatographic detection and identification of indole derivatives. J Chromatogr 132(2):267–276. https://doi.org/10.1016/S0021-9673(00)89300-0

    Article  CAS  PubMed  Google Scholar 

  30. Surange S, Wollum Ii A, Kumar N, Nautiyal CS (1997) Characterization of Rhizobium from root nodules of leguminous trees growing in alkaline soils. Can J Microbiol 43(9):891–894. https://doi.org/10.1139/m97-130

    Article  CAS  Google Scholar 

  31. Wilson PW, Knight SG (1952) Experiments in bacterial physiology. Burgess Publishing Co, Minneapolis, p 61

    Google Scholar 

  32. Honma M, Shimomura T (1978) Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agric Biol Chem 42:1825–1831. https://doi.org/10.1080/00021369.1978.10863261

    Article  CAS  Google Scholar 

  33. Lorck H (1948) Production of hydrocyanic acid by bacteria. Physiol Plant 1(2):142–146. https://doi.org/10.1111/j.1399-3054.1948.tb07118.x

    Article  CAS  Google Scholar 

  34. Zhao LX, Xu LH, Jiang CH (2012) Methods for the study of endophytic microorganisms from traditional Chinese medicine plants. In: Hopwood DA (ed) Methods in enzymology, vol 517, 1st edn. Academic Press, Boston, pp 3–21

    Google Scholar 

  35. Orhan F (2016) Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum). Brazilian J Microbiol 47(3):621–627. https://doi.org/10.1016/j.bjm.2016.04.001

    Article  CAS  Google Scholar 

  36. Tripathi AK, Nagarajan T, Verma SC, Le Rudulier D (2002) Inhibition of biosynthesis and activity of nitrogenase in Azospirillum brasilense Sp7 under salinity stress. Curr Microbiol 44(5):363–367. https://doi.org/10.1007/s00284-001-0022-8

    Article  CAS  PubMed  Google Scholar 

  37. Upadhyay SK, Singh DP, Saikia R (2009) Genetic diversity of plant growth promoting rhizobacteria isolated from rhizospheric soil of wheat under saline condition. Curr Microbiol 59(5):489–496. https://doi.org/10.1007/s00284-009-9464-1

    Article  CAS  PubMed  Google Scholar 

  38. Xiao C, Chi R, Li X, Xia M, Xia Z (2011) Biosolubilization of rock phosphate by three stress-tolerant fungal strains. Appl Biochem Biotechnol 165(2):719–727. https://doi.org/10.1007/s12010-011-9290-3

    Article  CAS  PubMed  Google Scholar 

  39. Siddikee MA, Chauhan P, Anandham R, Han G-H, Sa T (2010) Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil. J Microbiol Biotechnol 20(11):1577–1584. https://doi.org/10.4014/jmb.1007.07011

    Article  CAS  PubMed  Google Scholar 

  40. Navarro-Torre S, Barcia-Piedras J, Mateos-Naranjo E, Redondo-Gómez S, Camacho M, Caviedes M, Pajuelo E, Rodríguez-Llorente I (2017) Assessing the role of endophytic bacteria in the halophyte Arthrocnemum macrostachyum salt tolerance. Plant Biol J 19(2):249–256. https://doi.org/10.1111/plb.12521

    Article  CAS  Google Scholar 

  41. Orhan F, Demirci A (2020) Salt stress mitigating potential of halotolerant/halophilic plant growth promoting. Geomicrobiol J 37:1–7. https://doi.org/10.1080/01490451.2020.1761911

    Article  CAS  Google Scholar 

  42. Kumar A, Singh S, Mukherjee A, Rastogi RP, Verma JP (2021) Salt-tolerant plant growth-promoting Bacillus pumilus strain JPVS11 to enhance plant growth attributes of rice and improve soil health under salinity stress. Microbiol Res 242(4):126616. https://doi.org/10.1016/j.micres.2020.126616

    Article  CAS  PubMed  Google Scholar 

  43. Desale P, Patel B, Singh S, Malhotra A, Nawani N (2014) Plant growth promoting properties of Halobacillus sp. and Halomonas sp. in presence of salinity and heavy metals. J Basic Microbiol 54(8):781–791. https://doi.org/10.1002/jobm.201200778

    Article  CAS  PubMed  Google Scholar 

  44. Kang S-M, Khan AL, Waqas M, You Y-H, Kim J-H, Kim J-G, Hamayun M, Lee I-J (2014) Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J Plant Interac 9(1):673–682. https://doi.org/10.1080/17429145.2014.894587

    Article  CAS  Google Scholar 

  45. Zhou N, Zhao S, Tian C-Y (2017) Effect of halotolerant rhizobacteria isolated from halophytes on the growth of sugar beet (Beta vulgaris L.) under salt stress. FEMS Microbiol Lett 364(11):fnx091. https://doi.org/10.1093/femsle/fnx091

    Article  CAS  Google Scholar 

  46. Torbaghan ME, Lakzian A, Astaraei AR, Fotovat A, Besharati H (2017) Salt and alkali stresses reduction in wheat by plant growth promoting haloalkaliphilic bacteria. J Soil Sci Plant Nutr 17(4):1058–1087. https://doi.org/10.4067/S0718-95162017000400016

    Article  CAS  Google Scholar 

  47. Mukherjee P, Mitra A, Roy M (2019) Halomonas rhizobacteria of Avicennia marina of Indian Sundarbans promote rice growth under saline and heavy metal stresses through exopolysaccharide production. Front Microbiol 10:1207. https://doi.org/10.3389/fmicb.2019.01207

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ashraf M, Hasnain S, Berge O, Mahmood T (2004) Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol Fertil Soils 40:157–162. https://doi.org/10.1007/s00374-004-0766-y

    Article  CAS  Google Scholar 

  49. Bhise K, Dandge P (2019) Alleviation of salinity stress in rice plant by encapsulated salt tolerant plant growth promoting bacteria Pantoea agglomerans strain KL and its root colonization ability. Arch Agron Soil Sci 65:1955–1968. https://doi.org/10.1080/03650340.2019.1584395

    Article  Google Scholar 

  50. Fatima T, Mishra I, Verma R, Arora NK (2020) Mechanisms of halotolerant plant growth promoting Alacaligenes sp. involved in salt tolerance and enhancement of the growth of rice under salinity stress. 3 Biotech 10:361. https://doi.org/10.1007/s13205-020-02348-5

    Article  PubMed  PubMed Central  Google Scholar 

  51. Huang XF, Zhou D, Guo J, Manter D, Reardon K, Vivanco J (2015) Bacillus spp. from rainforest soil promote plant growth under limited nitrogen conditions. J Appl Microbiol 118(3):672–684. https://doi.org/10.1111/jam.12720

    Article  CAS  PubMed  Google Scholar 

  52. Ma J, Wang C, Wang H, Liu K, Zhang T, Yao L, Zhao Z, Du B, Ding Y (2018) Analysis of the complete genome sequence of Bacillus atrophaeus GQJK17 reveals its biocontrol characteristics as a plant growth-promoting rhizobacterium. BioMed Res Int 2018:1–9. https://doi.org/10.1155/2018/9473542

    Article  CAS  Google Scholar 

  53. Slama HB, Cherif-Silini H, Chenari Bouket A, Qader M, Silini A, Yahiaoui B, Alenezi FN, Luptakova L, Triki MA, Vallat A (2019) Screening for Fusarium antagonistic bacteria from contrasting niches designated the endophyte Bacillus halotolerans as plant warden against Fusarium. Front Microbiol 9:32–36. https://doi.org/10.3389/fmicb.2018.03236

    Article  Google Scholar 

  54. Kushwaha P, Kashyap PL, Kuppusamy P, Srivastava AK, Tiwari RK (2019) Functional characterization of endophytic bacilli from pearl millet (Pennisetum glaucum) and their possible role in multiple stress tolerance. Plant Biosyst 154(4):503–514. https://doi.org/10.1080/11263504.2019.1651773

    Article  Google Scholar 

  55. El-Akhdar I, Elsakhawy T, Abo-Koura HA (2020) Alleviation of salt stress on wheat (Triticum aestivum L.) by plant growth promoting bacteria strains Bacillus halotolerans MSR-H4 and Lelliottia amnigena MSR-M49. J Adv Microbiol. https://doi.org/10.9734/jamb/2020/v20i130208

    Article  Google Scholar 

  56. Chauhan AK, Maheshwari DK, Kim K, Bajpai VK (2016) Termitarium-inhabiting Bacillus endophyticus TSH42 and Bacillus cereus TSH77 colonizing Curcuma longa L.: isolation, characterization, and evaluation of their biocontrol and plant-growth-promoting activities. Can J Microbiol 62(10):880–892. https://doi.org/10.1139/cjm-2016-0249

    Article  CAS  PubMed  Google Scholar 

  57. Chauhan A, Shirkot C, Kaushal R, Rao D (2015) Plant growth-promoting rhizobacteria of medicinal plants in NW Himalayas: current status and future prospects. In: Egamberdieva D, Shrivastava S, Varma A (eds) Plant-growth-promoting rhizobacteria (PGPR) and medicinal plants. Springer, Cham, pp 381–412

    Chapter  Google Scholar 

  58. Akram MS, Shahid M, Tariq M, Azeem M, Javed MT, Saleem S, Riaz S (2016) Deciphering Staphylococcus sciuri SAT-17 mediated anti-oxidative defense mechanisms and growth modulations in salt stressed maize (Zea mays L.). Front microbiol 7:867. https://doi.org/10.3389/fmicb.2016.00867

    Article  PubMed  PubMed Central  Google Scholar 

  59. Nam H-M, Lim S-K, Kim J-M, Kang H-M, Moon J-S, Jang G-C, Kim J-M, Wee S-H, Joo Y-S, Jung S-C (2010) Antimicrobial susceptibility of coagulase-negative staphylococci isolated from bovine mastitis between 2003 and 2008 in Korea. J Microbiol Biotechnol 20(10):1446–1449. https://doi.org/10.4014/jmb.1005.05034

    Article  CAS  PubMed  Google Scholar 

  60. Beims H, Overmann A, Fulde M, Steinert M, Bergmann S (2016) Isolation of Staphylococcus sciuri from horse skin infection. Open Wet J 6(3):242–246. https://doi.org/10.4314/ovj.v6i3.14

    Article  CAS  Google Scholar 

  61. Verma P, Yadav AN, Khannam KS, Mishra S, Kumar S, Saxena AK, Suman A (2019) Appraisal of diversity and functional attributes of thermotolerant wheat associated bacteria from the peninsular zone of India. Saudi J Biol Sci 26(7):1882–1895. https://doi.org/10.1016/j.sjbs.2016.01.042

    Article  PubMed  Google Scholar 

  62. Mapelli F, Marasco R, Rolli E, Barbato M, Cherif H, Guesmi A, Ouzari I, Daffonchio D, Borin S (2013) Potential for plant growth promotion of rhizobacteria associated with Salicornia growing in Tunisian hypersaline soils. BioMed Res Int 2013:1–13. https://doi.org/10.1155/2013/248078

    Article  CAS  Google Scholar 

  63. Albdaiwi RN, Khaymi-Horani H, Ayad JY, Alananbeh KM, Kholoud M, Al-Sayaydeh R (2019) Isolation and characterization of halotolerant plant growth promoting rhizobacteria from durum wheat (Triticum turgidum subsp. durum) cultivated in saline areas of the dead sea region. Front Microbiol 10:1639. https://doi.org/10.3389/fmicb.2019.01639

    Article  PubMed  PubMed Central  Google Scholar 

  64. Rima FS, Biswas S, Sarker PK, Islam MR, Seraj ZI (2018) Bacteria endemic to saline coastal belt and their ability to mitigate the effects of salt stress on rice growth and yields. Ann Microbiol 68(9):525–535. https://doi.org/10.1007/s13213-018-1358-7

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to express his special thanks to Mustafa Erözdemir for the language correction of the manuscript.

Funding

This study was supported by Agri Ibrahim Cecen University Scientific Researches Project (Project number: BAP-F.E.F.18.005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Furkan Orhan.

Ethics declarations

Conflict of interest

The author states that he has no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLS 45 KB)

Supplementary file2 (DOCX 956 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orhan, F. Potential of Halophilic/Halotolerant Bacteria in Enhancing Plant Growth Under Salt Stress. Curr Microbiol 78, 3708–3719 (2021). https://doi.org/10.1007/s00284-021-02637-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02637-z

Navigation