Skip to main content
Log in

Uliginosibacterium aquaticum sp. nov., Isolated from a Freshwater Lake

  • Short Communication
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A Gram-stain-negative, aerobic, chemoheterotrophic, rod-shaped bacterium motile by a polar flagellum, designated IMCC34675T, was isolated from Chungju Lake, an artificial freshwater reservoir in Republic of Korea. The 16S rRNA gene sequence analysis indicated that strain IMCC34675T belongs to the genus Uliginosibacterium, sharing ≤ 97.1% sequence similarities with the type strains of the genus. Whole genome sequencing of strain IMCC34675T revealed a 4.1 Mbp of genome size with 62.4% of the DNA G + C content. The IMCC34675T genome shared 73.3% of average nucleotide identity and 19.9% of digital DNA-DNA hybridization values to the genome of Uliginosibacterium gangwonense DSM 18521T, the type species of the genus. The major fatty acids of strain IMCC34675T were summed feature 3 (comprising C16:1ω6c and/or C16:1ω7c) and C16:0. The respiratory quinone detected in the strains was ubiquinone-8 (Q-8). The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, one unidentified aminophospholipid, one aminolipid, and five unidentified lipids. Based on the phylogenetic and phenotypic characterization, strain IMCC34675T was considered to represent a novel species within the genus Uliginosibacterium, for which the name Uliginosibacterium aquaticum sp. nov. is proposed with IMCC34675T (= KACC 21758T = NBRC 114418T) as the type strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Data Availability

The online version of this article (https:// xxxxx) contains supplementary material, which is available to authorized users.

References

  1. Weon HY, Kim BY, Yoo SH, Kwon SW, Go SJ, Stackebrandt E (2008) Uliginosibacterium gangwonense gen. nov., sp. nov., isolated from a wetland, Yongneup, in Korea. Int J Syst Evol Microbiol 58:131–135. https://doi.org/10.1099/ijs.0.64567-0

    Article  CAS  PubMed  Google Scholar 

  2. Chen WM, Li YS, Chen ZH, Young CC, Sheu SY (2016) Uliginosibacterium paludis sp. nov., isolated from a marsh. Int J Syst Evol Microbiol 66:5118–5123. https://doi.org/10.1099/ijsem.0.001481

    Article  CAS  PubMed  Google Scholar 

  3. Kang JY, Chun J, Jahng KY (2017) Uliginosibacterium flavum sp. nov. isolated from an artificial lake. J Microbiol 55:595–599. https://doi.org/10.1007/s12275-017-7002-6

    Article  CAS  PubMed  Google Scholar 

  4. Han JH, Baek K, Ahn YH, Lee WJ, Lee MH (2018) Uliginosibacterium sangjuense sp. nov., isolated from sediment of the Nakdong River. Antonie Van Leeuwenhoek 111:259–264. https://doi.org/10.1007/s10482-017-0946-z

    Article  CAS  PubMed  Google Scholar 

  5. Hwang WM, Kim SM, Kang K, Ahn TY (2018) Uliginosibacterium sediminicola sp. nov., isolated from freshwater sediment. Int J Syst Evol Microbiol 68:924–929. https://doi.org/10.1099/ijsem.0.002611

    Article  CAS  PubMed  Google Scholar 

  6. Ferrando L, Fernandez Scavino A (2015) Strong shift in the diazotrophic endophytic bacterial community inhabiting rice (Oryza sativa) plants after flooding. FEMS Microbiol Ecol 91:fiv104. https://doi.org/10.1093/femsec/fiv104

    Article  CAS  PubMed  Google Scholar 

  7. Aggarwal S, Gomez-Smith CK, Jeon Y, LaPara TM, Waak MB, Hozalski RM (2018) Effects of chloramine and coupon material on biofilm abundance and community composition in bench-scale simulated water distribution systems and comparison with full-scale water mains. Environ Sci Technol 52:13077–13088. https://doi.org/10.1021/acs.est.8b02607

    Article  CAS  PubMed  Google Scholar 

  8. Wang J, Rong H, Zhang C (2018) Evaluation of the impact of dissolved oxygen concentration on biofilm microbial community in sequencing batch biofilm reactor. J Biosci Bioeng 125:532–542. https://doi.org/10.1016/j.jbiosc.2017.11.007

    Article  CAS  PubMed  Google Scholar 

  9. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617. https://doi.org/10.1099/ijsem.0.001755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jeon HT, Joung Y, Kim S, Lim Y, Cho J-C (2017) A report on 17 unrecorded bacterial species in Korea isolated from Lakes Soyang and Chungju in 2016. J Species Res 6:163–170. https://doi.org/10.12651/JSR.2017.6.2.163

    Article  Google Scholar 

  11. Kim J-H, Kim Y-H, Lee I-K (1998) Dynamics of phytoplankton community in Lake Chungju. Algae 13:339–354

    Google Scholar 

  12. Kim J-B, Moon M-S, Lee D-H, Lee S-T, Bazzicalupo M, Kim C-K (2004) Comparative analysis of cyanobacterial communities from polluted reservoirs in Korea. J Microbiol 42:181–187

    CAS  PubMed  Google Scholar 

  13. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703. https://doi.org/10.1128/jb.173.2.697-703.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882. https://doi.org/10.1093/nar/25.24.4876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376. https://doi.org/10.1007/BF01734359

    Article  CAS  PubMed  Google Scholar 

  17. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  CAS  PubMed  Google Scholar 

  18. Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416. https://doi.org/10.2307/2412116

    Article  Google Scholar 

  19. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. https://doi.org/10.2307/2408678

    Article  PubMed  Google Scholar 

  20. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60. https://doi.org/10.1186/1471-2105-14-60

    Article  Google Scholar 

  23. Na SI, Kim YO, Yoon SH, Ha SM, Baek I, Chun J (2018) UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 56:280–285. https://doi.org/10.1007/s12275-018-8014-6

    Article  CAS  PubMed  Google Scholar 

  24. Price MN, Dehal PS, Arkin AP (2009) FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol 26:1641–1650. https://doi.org/10.1093/molbev/msp077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kanehisa M, Sato Y, Morishima K (2016) BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 428:726–731. https://doi.org/10.1016/j.jmb.2015.11.006

    Article  CAS  PubMed  Google Scholar 

  26. Galperin MY, Makarova KS, Wolf YI, Koonin EV (2015) Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res 43:D261-269. https://doi.org/10.1093/nar/gku1223

    Article  CAS  PubMed  Google Scholar 

  27. Marchler-Bauer A, Zheng C, Chitsaz F, Derbyshire MK, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Lu S, Marchler GH, Song JS, Thanki N, Yamashita RA, Zhang D, Bryant SH (2013) CDD: conserved domains and protein three-dimensional structure. Nucleic Acids Res 41:D348-352. https://doi.org/10.1093/nar/gks1243

    Article  CAS  PubMed  Google Scholar 

  28. Stackebrandt E, Ebers J (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155

    Google Scholar 

  29. Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106:19126–19131. https://doi.org/10.1073/pnas.0906412106

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, Rooney APM, Yi H, Xu X-W, De Meyer S, Trujillo ME (2018) Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68:461–466. https://doi.org/10.1099/ijsem.0.002516

    Article  CAS  PubMed  Google Scholar 

  31. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91. https://doi.org/10.1099/ijs.0.64483-0

    Article  CAS  PubMed  Google Scholar 

  32. Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc., Newark

  33. Minnikin DE, O’Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett JH (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241. https://doi.org/10.1016/0167-7012(84)90018-6

    Article  CAS  Google Scholar 

  34. Collins MD, Jones D (1981) A note on the separation of natural mixtures of bacterial ubiquinones using reverse-phase partition thin-layer chromatography and high performance liquid chromatography. J Appl Microbiol 51:129–134. https://doi.org/10.1111/j.1365-2672.1981.tb00916.x

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the research grant “Survey of freshwater organisms and specimen collection (Prokaryotes)” from Nakdonggang National Institute of Biological Resources of the Ministry of Environment in Korea and by Inha University Research Grant.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, JS, MK, and J-CC; Data curation, JS, MK, and J-CC; Funding acquisition, J-CC; Investigation, JS, YJ, MK, and IK; Resources, YJ; Supervision, J-CC; Visualization, JS, MK, and IK; Writing-original draft, JS; Writing-review &editing, JS, MSP, IK, and J-CC. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Jang-Cheon Cho.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors. Moreover, all authors read and approved the final manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 495 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Kim, M., Park, M.S. et al. Uliginosibacterium aquaticum sp. nov., Isolated from a Freshwater Lake. Curr Microbiol 78, 3381–3387 (2021). https://doi.org/10.1007/s00284-021-02605-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02605-7

Navigation