Skip to main content

Advertisement

Log in

Natural Products of the Fungal Genus Humicola: Diversity, Biological Activity, and Industrial Importance

  • Review Article
  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Fungal metabolites are worthily taken into account as a pool of synthetically interesting and remarkably important new lead compounds for medical, agricultural, and chemical industries. Humicola species are known to have biotechnological and industrial potentials. Humicola genus (family Chaetomiaceae) is a prosperous fountainhead of unique and structurally diverse metabolites that have various bioactivities. Moreover, Humicola species attract substantial attention for their marked ability to produce thermostable enzymes with biotechnological and industrial importance. This review highlights the published researches on the isolated metabolites from the genus Humicola and their biological activities as well as the industrial importance of Humicola species. In the current review, more than 50 compounds are described and 84 references are cited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

17AAG:

17-(Allylamino)-17-demethoxygeldanamycin

AR:

Aldose reductase

ARI:

Aldose reductase inhibitor

BHK-21:

Baby hamster kidney cell

DGAT:

Diacylglycerol acyltransferase

EC50 :

50% of the larval population inhibition

EG-5:

Endoglucanase-5

ER:

Estrogen receptor

GDA:

Geldanamycin

HBA:

Hsp90-binding agent

HDAC:

Histone deacetylase

HDACIs:

Histone deacetylase inhibitors

HIV:

Human immunodeficiency virus

HSF1:

Heat shock factor 1

Hsp90:

Heat shock protein 90

HTS:

High-throughput screening assay

IC50 :

Concentration required to inhibit cell growth by 50%

IGF-1R:

Type 1 insulin-like growth factor receptor

IZD:

Inhibition zone diameter

KB:

Human epidermoid carcinoma cell

LD:

Lethal dose to kill all population

LD50 :

Lethal dose to kill 50% of population

MAP:

Mitogen-activated protein

MIC:

Minimum inhibitory concentration

NFκB:

Nuclear factor kappa light chain enhancer of activated B cells

MTT:

(3-(4,5-Dimethylthiazol-2-yl))-2,5-diphenyl-2H-tetrazolium bromide

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PKC:

Protein Kinase C

POS:

Pectin oligosaccharides

RALs:

Resorcylic acid lactones

RBL-2H3:

Basophilic leukemia cell line

SAHA:

Suberoylanilide hydroxamic acid

SCB:

Sugarcane bagasse

SPA:

Scintillation proximity assay

TG:

Triacylglycerol

TR-FRET:

Time-resolved fluorescence resonance energy transfer-based assay

VIIa:

Activated factor VII

References

  1. Hyde KD, Xu J, Rapior S, Jeewon R, Lumyong S, Niego AGT et al (2019) The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Diver 97:1–136

    Article  Google Scholar 

  2. Bills GF, Gloer JB (2017) Biologically active secondary metabolites from the fungi. In: Heitman J, Howlett B, Crous P, Stukenbrock E, James T, Gow N (eds) The fungal kingdom. ASM Press, Washington, pp 1087–1119

    Chapter  Google Scholar 

  3. Lange L (2014) The importance of fungi and mycology for addressing major global challenges. IMA Fungus 5:463–471

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lange L, Bech L, Busk PK, Grell MN, Huang Y, Lange M, Linde T, Pilgaard B, Roth D, Tong X (2012) The importance of fungi and of mycology for a global development of the bioeconomy. IMA Fungus 3:87–92

    Article  PubMed  PubMed Central  Google Scholar 

  5. Daguerre Y, Edel-Hermann V, Steinberg C (2017) Fungal genes and metabolites associated with the biocontrol of soil-borne plant pathogenic fungi. In: Mérillon JM, Ramawat K (eds) Fungal metabolites. Springer, Cham, pp 33–104

    Chapter  Google Scholar 

  6. Keller NP (2019) Fungal secondary metabolism: regulation, function and drug discovery. Nat Rev Microbiol 17:167–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Beekman AM, Barrow RA (2014) Fungal metabolites as pharmaceuticals. Aust J Chem 67:827–843

    Article  CAS  Google Scholar 

  8. Traaen AE (1914) Untersuchungen über bodenpilze aus Norwegen. Nyt Mag Naturvidenskaberne 52:19–139

    Google Scholar 

  9. Wang XW, Yang FY, Meijer M, Kraak B, Sun BD, Jiang YL, Wu YM, Bai FY, Seifert KA, Crous PW, Samson RA, Houbraken J (2019) Redefining Humicola sensu stricto and related genera in the Chaetomiaceae. Stud Mycol 93:65–153

    Article  CAS  PubMed  Google Scholar 

  10. Jiang YL, Wu YM, Xu JJ, Geng YH, Wang HF, Zhang TY (2016) Four new Humicola species from soil in China. Mycotaxon 131:269275

    Google Scholar 

  11. Joshi BK, Gloer JB, Wicklow DT (2002) Bioactive natural products from a sclerotium-colonizing isolate of Humicola fuscoatra. J Nat Prod 65:1734–1737

    Article  CAS  PubMed  Google Scholar 

  12. Wang Z, Xu B, Luo H, Meng K, Wang Y, Liu M, Bai Y, Yao B, Tu T (2020) Production pectin oligosaccharides using Humicola insolens Y1-derived unusual pectate lyase. J Biosci Bioeng 129:16–22

    Article  CAS  PubMed  Google Scholar 

  13. Cintra LC, Fernandes AG, Oliveira ICM, Siqueira SJL, Costa IGO, Colussi F, Jesuíno RSA, Ulhoa CJ, Faria FP (2017) Characterization of a recombinant xylose tolerant β-xylosidase from Humicola grisea var. thermoidea and its use in sugarcane bagasse hydrolysis. Int J Biol Macromol 105(1):262–271

    Article  CAS  PubMed  Google Scholar 

  14. Oliveira GS, Ulhoa CJ, Silveira MH, Andreaus J, Silva-Pereira I, Poças-Fonseca MJ, Faria FP (2013) An alkaline thermostable recombinant Humicola grisea var. thermoidea cellobiohydrolase presents bifunctional (endo/exoglucanase) activity on cellulosic substrates. World J Microbiol Biotechnol 29:19–26

    Article  CAS  PubMed  Google Scholar 

  15. Mello-de-Sousa TM, Silva-Pereira I, Poças-Fonseca MJ (2011) Carbon source and pH-dependent transcriptional regulation of cellulase genes of Humicola grisea var. thermoidea grown on sugarcane bagasse. Enzyme Microb Technol 48:19–26

    Article  CAS  PubMed  Google Scholar 

  16. Dantas-Barbosa C, Araújo EF, Moraes LM, Vainstein MH, Azevedo MO (1998) Genetic transformation of germinated conidia of the thermophilic fungus Humicola grisea var. thermoidea to hygromycin B resistance. FEMS Microbiol Lett 169:185–190

    Article  CAS  PubMed  Google Scholar 

  17. Mejia EJ, Loveridge ST, Stepan G, Tsai A, Jones GS, Barnes T, White KN, Drašković M, Tenney K, Tsiang M, Geleziunas R, Cihlar T, Pagratis N, Tian Y, Yu H, Crews P (2014) Study of marine natural products including resorcyclic acid lactones from Humicola fuscoatra that reactivate latent HIV-1 expression in an in vitro model of central memory CD4+ T cells. J Nat Prod 77:618–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yamamoto K, Hatano H, Arai M, Shiomi K, Tomoda H, Omura S (2003) Structure elucidation of new monordens produced by Humicola sp. FO-2942. J Antibiot 56:533–538

    Article  CAS  Google Scholar 

  19. Arai M, Yamamoto K, Namatame I, Tomoda H, Omura S (2003) New monordens produced by amidepsine-producing fungus Humicola sp. FO-2942. J Antibiot 56:526–532

    Article  CAS  Google Scholar 

  20. Wicklow DT, Joshi BK, Gamble WR, Gloer JB, Dowd PF (1998) Antifungal metabolites (monorden, monocillin IV, and cerebrosides) from Humicola fuscoatra traaen NRRL 22980, a mycoparasite of Aspergillus flavus sclerotia. Appl Environ Microbiol 64:4482–14484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Smetanina OF, Kuznetsova TA, Gerasimenko AV, Kalinovsky AI, Pivkin MV, Dmitrenok PC, Elyakov GB (2004) Metabolites of the marine fungus Humicola fuscoatra KMM 4629. Russ Chem Bull 53:2643–2646

    Article  CAS  Google Scholar 

  22. Andrioli WJ, Santos MS, Silva VB, Oliveira RB, Chagas-Paula DA, Jorge JA, Furtado NA, Pupo MT, Silva CH, Naal RM, Bastos JK (2012) δ-Lactam derivative from thermophilic soil fungus exhibits in vitro anti-allergic activity. Nat Prod Res 26:2168–2175

    Article  CAS  PubMed  Google Scholar 

  23. Laurent D, Guella G, Mancini I, Roquebert MF, Farinole F, Pietrad F (2002) A new cytotoxic tetralone derivative from Humicola grisea, a filamentous fungus from wood in the southeastern lagoon of New Caledonia. Tetrahedron 58:9163–9167

    Article  CAS  Google Scholar 

  24. Nishikawa M, Tsurumi Y, Murai H, Yoshida K, Okamoto M, Takase S, Tanaka H, Hirota H, Hashimoto M, Kohsaka M (1991) WF-2421, a new aldose reductase inhibitor produced from a fungus, Humicola grisea. J Antibiot 44:130–135

    Article  CAS  Google Scholar 

  25. Mocek U, Schultz L, Buchan T, Baek C, Fretto L, Nzerem J, Sehl L, Sinha U (1996) Isolation and structure elucidation of five new asterriquinones from Aspergillus, Humicola and Botryotrichum species. J Antibiot 49:854–859

    Article  CAS  Google Scholar 

  26. Gomi S, Imamura K, Yaguchi T, Kodama Y, Minowa N, Koyama M (1994) PF1018, a novel insecticidal compound produced by Humicola sp. J Antibiot 47:571–580

    Article  CAS  Google Scholar 

  27. Matsuzaki K, Tabata N, Tomoda H, Iwai Y, Tanaka H, Õmura S (1993) The Structure of xanthoquinodin Al, a novel anticoccidial antibiotic having a new xanthone-anthraquinone conjugate system. Tetrahedron Lett 34:8251–8254

    Article  CAS  Google Scholar 

  28. Tabata N, Suzumura Y, Tomoda H, Masuma R, Haneda K, Kishi M, Iwai Y, Omura S (1993) Xanthoquinodins, new anticoccidial agents produced by Humicola sp. production, isolation and physico–chemical and biological properties. J Antibiot 46:749–755

    Article  CAS  Google Scholar 

  29. Tabata N, Tomoda H, Iwai Y, Omura S (1996) Xanthoquinodin B3, a new anticoccidial agent produced by Humicola sp. FO-888. J Antibiot 49:267–271

    Article  CAS  Google Scholar 

  30. Inokoshi J, Takagi Y, Uchida R, Masuma R, Omura S, Tomoda H (2010) Production of a new type of amidepsine with a sugar moiety by static fermentation of Humicola sp. FO-2942. J Antibiot 63:9–16

    Article  CAS  Google Scholar 

  31. Tomoda H, Ito M, Tabata N, Masuma R, Yamaguchi Y, Omura S (1995) Amidepsines, inhibitors of diacylglycerol acyltransferase produced by Humicola sp. FO-2942. I. Production, isolation and biological properties. J Antibiot 48:937–941

    Article  CAS  Google Scholar 

  32. Tomoda H, Tabata N, Ito M, Omura S (1995) Amidepsines, inhibitors of diacylglycerol acyltransferase produced by Humicola sp. FO-2942. II. Structure elucidation of amidepsines A, B and C. J Antibiot 48:942–947

    Article  CAS  Google Scholar 

  33. Tomoda H, Yamaguchi Y, Tabata N, Kobayashi T, Masuma R, Tanaka H, Omura S (1996) Amidepsine E, an inhibitor of diacylglycerol acyltransferase produced by Humicola sp. FO-5969. J Antibiot 49:929–931

    Article  CAS  Google Scholar 

  34. Tanaka Y, Shiomi K, Kamei K, Sugoh-Hagino M, Enomoto Y, Fang F, Yamaguchi Y, Masuma R, Zhang CG, Zhang XW, Omura S (1998) Antimalarial activity of radicicol, heptelidic acid and other fungal metabolites. J Antibiot 51:153–160

    Article  CAS  Google Scholar 

  35. Turbyville TJ, Wijeratne EM, Liu MX, Burns AM, Seliga CJ, Luevano LA, David CL, Faeth SH, Whitesell L, Gunatilaka AA (2006) Search for Hsp90 inhibitors with potential anticancer activity: isolation and SAR studies of radicicol and monocillin I from two plant-associated fungi of the Sonoran desert. J Nat Prod 69:178–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Inokoshi J, Kawamoto K, Takagi Y, Matsuhama M, Omura S, Tomoda H (2009) Expression of two human acyl-CoA: diacylglycerol acyltransferase isozymes in yeast and selectivity of microbial inhibitors toward the isozymes. J Antibiot 62:51–54

    Article  CAS  Google Scholar 

  37. Liu X, Kokare C (2017) Biotechnology of microbial enzymes. Elsevier, Amsterdam, pp 267–298

    Book  Google Scholar 

  38. Deckers M, Deforce D, Fraiture MA, Roosens NHC (2020) Genetically modified micro-organisms for industrial food enzyme production: an overview. Foods 9:326

    Article  CAS  PubMed Central  Google Scholar 

  39. De-Paula EH, Ramos LP, de Oliveira AM (1999) The potential of Humicola grisea var thermoidea for bioconversion of sugar cane bagasse. Bioresour Technol 68:35–41

    Article  CAS  Google Scholar 

  40. Iembo T, Azevedo M, Bloch C Jr, Filho EXF (2006) Purification and partial characterization οf a new β-xylosidase from Humicola grisea var. thermoidea. World J Microbiol Biotechnol 22:475–479

    Article  CAS  Google Scholar 

  41. de Faria FP, Te’O VS, Bergquist PL, Azevedo MO, Nevalainen KM (2002) Expression and processing of a major xylanase (XYN2) from the thermophilic fungus Humicola grisea var. thermoidea in Trichoderma reesei. Lett Appl Microbiol 34:119–123

    Article  PubMed  Google Scholar 

  42. de Almeida EM, Maria de Lourdes TM, Terenzi HF, Jorge JA (1995) Purification and biochemical characterization of β-xylosidase from Humicola grisea var thermoidea. FEMS Microbiol Lett 130:171–175

    Article  Google Scholar 

  43. Naver H, Løvborg U (1995) The importance of non-charged amino acids in antibody binding to Humicola lanuginosa lipase. Scand J Immunol 41:443–448

    Article  CAS  PubMed  Google Scholar 

  44. Zimmermann AL, Terenzi HF, Jorge JA (1990) Purification and properties of an extracellular conidial trehalase from Humicola grisea var. thermoidea. Biochim Biophys Acta 1036:41–46

    Article  CAS  PubMed  Google Scholar 

  45. Mandalari G, Bisignano G, Lo Curto RB, Waldron KW, Faulds CB (2008) Production of feruloyl esterases and xylanases by Talaromyces stipitatus and Humicola grisea var. thermoidea on industrial food processing by-products. Bioresour Technol 99:5130–5133

    Article  CAS  PubMed  Google Scholar 

  46. Moriya RY, Gonçalves AR, Faria FP (2005) Enzymatic bleaching of organosolv sugarcane bagasse pulps with recombinant xylanase of the fungus Humicola grisea and with commercial Cartazyme HS xylanase. Appl Biochem Biotechnol 121–124:195–203

    Article  PubMed  Google Scholar 

  47. Saranra JP, Stella D, Reetha D (2012) Microbial cellulases and its applications: a review. Int J Biochem Biotechnol Sci 1:1–2

    Google Scholar 

  48. Green BJ, Beezhold DH (2011) Industrial fungal enzymes: an occupational allergen perspective. J Allergy 2011:682574

    Article  CAS  Google Scholar 

  49. Bhat MK, Bhat S (1997) Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv 15:583–620

    Article  CAS  PubMed  Google Scholar 

  50. Schülein M (1997) Enzymatic properties of cellulases from Humicola insolens. J Biotechnol 57:71–81

    Article  PubMed  Google Scholar 

  51. Dalby PA (2007) Engineering enzymes for biocatalysis. Recent Pat Biotechnol 1:1–9

    Article  CAS  PubMed  Google Scholar 

  52. Ben Hmad I, Gargouri A (2017) Neutral and alkaline cellulases: Production, engineering, and applications. J Basic Microbiol 57:653–658

    Article  CAS  PubMed  Google Scholar 

  53. Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101:4775–4800

    Article  PubMed  CAS  Google Scholar 

  54. Knob A, Terrasan CRF, Carmona EC (2010) β-Xylosidases from filamentous fungi: an overview. World J Microbiol Biotechnol 26:389–407

    Article  CAS  Google Scholar 

  55. Du Y, Shi P, Huang H, Zhang X, Luo H, Wang Y, Yao B (2013) Characterization of three novel thermophilic xylanases from Humicola insolens Y1 with application potentials in the brewing industry. Bioresour Technol 130:161–167

    Article  CAS  PubMed  Google Scholar 

  56. Benoliel B, Poças-Fonseca MJ, Torres FA, de Moraes LM (2010) Expression of a glucose-tolerant beta-glucosidase from Humicola grisea var. thermoidea in Saccharomyces cerevisiae. Appl Biochem Biotechnol 160:2036–2044

    Article  CAS  PubMed  Google Scholar 

  57. Stadler M, Tichy HV, Katsiou E, Hellwig V (2003) Chemotaxonomy of Pochonia and other conidial fungi with Verticillium-like anamorphs. Mycol Prog 2:95–122

    Article  Google Scholar 

  58. Mann JFS, Pankrac J, Klein K, McKay PF, King DFL, Gibson R, Wijewardhana CN, Pawa R, Meyerowitz J, Gao Y, Canaday DH, Avino M, Poon AFY, Foster C, Fidler S, Shattock RJ, Arts EJ (2020) A targeted reactivation of latent HIV-1 using an activator vector in patient samples from acute infection. EBioMedicine 59:102853. https://doi.org/10.1016/j.ebiom.2020.102853

    Article  PubMed  PubMed Central  Google Scholar 

  59. Margolis DM (2011) Histone deacetylase inhibitors and HIV latency. Curr Opin HIV AIDS 6:25–29

    Article  PubMed  PubMed Central  Google Scholar 

  60. Laird GM, Bullen CK, Rosenbloom DI, Martin AR, Hill AL, Durand CM, Siliciano JD, Siliciano RF (2015) Ex vivo analysis identifies effective HIV-1 latency-reversing drug combinations. J Clin Invest 125:1901–1912

    Article  PubMed  PubMed Central  Google Scholar 

  61. Jove R, Hanafusa H (1987) Cell transformation by the viral src gene. Annu Rev Cell Biol 3:31–56

    Article  CAS  PubMed  Google Scholar 

  62. Inoue H, Pan J, Hakura A (1998) Suppression of v-src transformation by the drs gene. J Virol 72:2532–2537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kwon HJ, Owa T, Hassig CA, Shimada J, Schreiber SL (1998) Depudecin induces morphological reversion of transformed fibroblasts via the inhibition of histone deacetylase. Proc Natl Acad Sci USA 95:3356–3361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mosser DD, Morimoto RI (2004) Molecular chaperones and the stress of oncogenesis. Oncogene 23:2907–2918

    Article  CAS  PubMed  Google Scholar 

  65. Isaacs JS, Xu W, Neckers L (2003) Heat shock protein 90 as a molecular target for cancer therapeutics. Cancer Cell 3:213–217

    Article  CAS  PubMed  Google Scholar 

  66. Bolen JB, Rosen N, Israel MA (1985) Increased pp60c-src tyrosyl kinase activity in human neuroblastomas is associated with amino-terminal tyrosine phosphorylation of the src gene product. Proc Natl Acad Sci USA 82:7275–7279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kwon HJ, Yoshida M, Fukui Y, Horinouchi S, Beppu T (1992) Potent and specific inhibition of p60v-src protein kinase both in vivo and in vitro by radicicol. Cancer Res 52:6926–6930

    CAS  PubMed  Google Scholar 

  68. Moulin E, Zoete V, Barluenga S, Karplus M, Winssinger N (2005) Design, synthesis, and biological evaluation of HSP90 inhibitors based on conformational analysis of radicicol and its analogues. J Am Chem Soc 127:6999–7004

    Article  CAS  PubMed  Google Scholar 

  69. Zhou V, Han S, Brinker A, Klock H, Caldwell J, Gu XJ (2004) A time-resolved fluorescence resonance energy transfer-based HTS assay and a surface plasmon resonance-based binding assay for heat shock protein 90 inhibitors. Anal Biochem 331:349–357

    Article  CAS  PubMed  Google Scholar 

  70. Schulte TW, Akinaga S, Soga S, Sullivan W, Stensgard B, Toft D, Neckers LM (1998) Antibiotic radicicol binds to the N-terminal domain of Hsp90 and shares important biologic activities with geldanamycin. Cell Stress Chaperones 3:100–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bagatell R, Paine-Murrieta GD, Taylor CW, Pulcini EJ, Akinaga S, Benjamin IJ, Whitesell L (2000) Induction of a heat shock factor 1-dependent stress response alters the cytotoxic activity of hsp90-binding agents. Clin Cancer Res 6:3312–3318

    CAS  PubMed  Google Scholar 

  72. Sharma SV, Agatsuma T, Nakano H (1998) Targeting of the protein chaperone, HSP90, by the transformation suppressing agent, radicicol. Oncogene 16:2639–2645

    Article  CAS  PubMed  Google Scholar 

  73. Roe SM, Prodromou C, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1999) Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J Med Chem 42:260–266

    Article  CAS  PubMed  Google Scholar 

  74. Soga S, Neckers LM, Schulte TW, Shiotsu Y, Akasaka K, Narumi H, Agatsuma T, Ikuina Y, Murakata C, Tamaoki T, Akinaga S (1999) KF25706, a novel oxime derivative of radicicol, exhibits in vivo antitumor activity via selective depletion of Hsp90 binding signaling molecules. Cancer Res 59:2931–2938

    CAS  PubMed  Google Scholar 

  75. Tang F, Chen F, Ling X, Huang Y, Zheng X, Tang Q, Tan X (2015) Inhibitory effect of methyleugenol on IgE-mediated allergic inflammation in RBL-2H3 cells. Mediat Inflamm 2015:463530

    Article  Google Scholar 

  76. Guo RH, Park JU, Jo SJ, Ahn JH, Park JH, Yang JY, Lee SS, Park MJ, Kim YR (2018) Anti-allergic inflammatory effects of the essential oil from fruits of Zanthoxylum coreanum Nakai. Front Pharmacol 9:1441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. White NJ, Pukrittayakamee S, Hien TT, Faiz MA, Mokuolu OA, Dondorp AM (2014) Malaria. Lancet 383:723–735

    Article  PubMed  Google Scholar 

  78. Duong S, Lim P, Fandeur T, Tsuyuoka R, Wongsrichanalai C (2004) Importance of protection of anti-malarial combination therapies. Lancet 364:1754–1755

    Article  PubMed  Google Scholar 

  79. Ibrahim SRM, Mohamed GA, Al Haidari RA, El-Kholy AA, Zayed MF (2018) Potential anti-malarial agents from endophytic fungi: a review. Mini Rev Med Chem 18:1110–1132

    Article  CAS  PubMed  Google Scholar 

  80. Elmotte P, Delmotte-plaque J (1953) A new antifungal substance of fungal origin. Nature 171(4347):344

    Article  Google Scholar 

  81. Grewal AS, Bhardwaj S, Pandita D, Lather V, Sekhon BS (2016) Updates on aldose reductase inhibitors for management of diabetic complications and non-diabetic diseases. Mini Rev Med Chem 16:120–162

    Article  CAS  PubMed  Google Scholar 

  82. Dalloul RA, Lillehoj HS (2006) Poultry coccidiosis: recent advancements in control measures and vaccine development. Expert Rev Vaccines 5:143–163

    Article  CAS  PubMed  Google Scholar 

  83. Williams RB (2006) Relative virulences of a drug-resistant and a drug-sensitive strain of Eimeria acervulina, a coccidium of chickens. Vet Parasitol 135:5–23

    Article  Google Scholar 

  84. Løvsletten NG, Vu H, Skagen C, Lund J, Kase ET, Thoresen GH, Zammit VA, Rustan AC (2020) Treatment of human skeletal muscle cells with inhibitors of diacylglycerol acyltransferases 1 and 2 to explore isozyme-specific roles on lipid metabolism. Sci Rep 10:238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

The authors received no specific funding for this work.

Author information

Authors and Affiliations

Authors

Contributions

SRM and GAM contributed to conceptualization; GAM and SGAM contributed to resources; SRMI, GAM, and SGAM were involved in writing––original draft preparation; GAM and SRMI were involved in writing––review and editing; AEA was involved in resources and proof-reading. All the authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Sabrin R. M. Ibrahim.

Ethics declarations

Conflicts of interest

The authors have no conflict of interest to declare.

Consent for Publication

All the authors consent to the publication of the review in Current Microbiology.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, S.R.M., Mohamed, S.G.A., Altyar, A.E. et al. Natural Products of the Fungal Genus Humicola: Diversity, Biological Activity, and Industrial Importance. Curr Microbiol 78, 2488–2509 (2021). https://doi.org/10.1007/s00284-021-02533-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02533-6

Navigation