Skip to main content
Log in

Screening and Identification of Lipopeptide Biosurfactants Produced by Two Aerobic Endospore-Forming Bacteria Isolated from Mfabeni Peatland, South Africa

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Two aerobic endospore-forming bacteria (AEFB), isolates SAB19 and SAD18, capable of biosurfactant production were isolated from a sediment core sampled from Mfabeni peatland, St Lucia, KwaZulu-Natal, South Africa. The isolates were screened for biosurfactant activity using drop collapse assay, hemolysis assay, oil spreading assay, emulsification, and surface tension measurement. The effect of environmental parameters––temperature [35 – 100 °C], pH [3.0 – 10.0], and salinity [0.5 – 15%]––on biosurfactant stability was also determined. Ultra-performance liquid chromatography in conjunction with electrospray ionization time-of-flight mass spectrometry (UPLC ESI-TOF MS) analysis revealed that both isolates produced surfactin isomers and a common mass peak of m/z 1326.1 that was ascribed to a precursor of the antibiotic plantazolicin (PZN). Isolate SAD18 was also found to produce the lipopeptides fengycin and iturin. Taxonomic classification based on partial 16S rRNA gene sequencing revealed that isolates SAB19 and SAD18 belonged to the Brevibacillus and Bacillus genera, respectively. The GenBank accession numbers obtained for SAB19 and SAD18 are MW429226 and MW441217. Biosurfactant extracts from isolate SAD18 exhibited the greatest level of surfactant activity and stability over the range of environmental parameters tested. Although no novel biosurfactants were identified, it was confirmed that the peatland environment represents an untapped source of microbial diversity with potential biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Banat IM (1995) Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review. Bioresour Technol 51(1):1–12

    Article  CAS  Google Scholar 

  2. Padmavathi AR, Pandian SK (2014) Antibiofilm activity of biosurfactant producing coral associated bacteria isolated from Gulf of Mannar. Indian J Microbiol 54(4):376–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53(5):495–508

    Article  CAS  PubMed  Google Scholar 

  4. Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Bio Rev 61(1):47–64

    CAS  Google Scholar 

  5. Lima TM, Procópio LC, Brandão FD, Carvalho AM, Tótola MR, Borges AC (2011) Biodegradability of bacterial surfactants. Biodegradation 22(3):585–592

    Article  CAS  PubMed  Google Scholar 

  6. Kumar PS, Ngueagni PT (2021) A review on new aspects of lipopeptide biosurfactant: types, production, properties and its application in the bioremediation process. J Hazard Mater 407:124827

    Article  PubMed  CAS  Google Scholar 

  7. Neu TR (1996) Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiol Rev 60(1):151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Elkhawaga MA (2018) Optimization and characterization of biosurfactant from Streptomyces griseoplanus NRRL-ISP 5009 (MS 1). J Appl Microbiol 124(3):691–707

    Article  CAS  PubMed  Google Scholar 

  9. Cameotra SS, Makkar RS (2004) Recent applications of biosurfactants as biological and immunological molecules. Curr Opin Microbiol 7(3):262–266

    Article  CAS  PubMed  Google Scholar 

  10. Gross H, Loper JE (2009) Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep 26(11):1408–1446

    Article  CAS  PubMed  Google Scholar 

  11. Donadio S, Monciardini P, Sosio M (2007) Polyketide synthases and nonribosomal peptide synthetases: the emerging view from bacterial genomics. Nat Prod Rep 24(5):1073–1109

    Article  CAS  PubMed  Google Scholar 

  12. Arima K, Kakinuma A, Tamura G (1968) Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 31(3):488–494

    Article  CAS  PubMed  Google Scholar 

  13. Gudiña EJ, Rangarajan V, Sen R, Rodrigues LR (2013) Potential therapeutic applications of biosurfactants. Trends Pharmacol Sci 34(12):667–675

    Article  PubMed  CAS  Google Scholar 

  14. Vater J, Kablitz B, Wilde C, Franke P, Mehta N, Cameotra SS (2002) Matrix-assisted laser desorption ionization-time of flight mass spectrometry of lipopeptide biosurfactants in whole cells and culture filtrates of Bacillus subtilis C-1 isolated from petroleum sludge. Appl Environ Microbiol 68(12):6210–6219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Naidoo S (2017) Revival and characterization of aerobic endospore-forming bacteria from an ancient sediment core obtained from the Mfabeni peatland, South Africa. Masters dissertation. University of KwaZulu-Natal.

  16. Grundling P, Mazus H, Baartman L (1998) Peat resources in northern KwaZulu-Natal wetlands: Maputaland. Department of Environmental Affairs and Tourism Report No. A25/13/2/7. Pretoria, South Africa: Council for Geoscience.

  17. Grundling P, Grootjans AP, Price JS, Ellery WN (2013) Development and persistence of an African mire: how the oldest South African fen has survived in a marginal climate. CATENA 110:176–183

    Article  Google Scholar 

  18. Hunter CH (2016) Screening of aerobic endospore-forming bacterial isolates as candidate biocontrol agents against Rhizoctonia solani. Doctoral dissertation. University of KwaZulu-Natal.

  19. Morikawa M, Hirata Y, Imanaka T (2000) A study on the structure–function relationship of lipopeptide biosurfactants. BBA-Mol Cell Biol L 1488(3):211–218

    CAS  Google Scholar 

  20. Cooper DG, Goldenberg BG (1987) Surface-active agents from two Bacillus species. Appl Environ Microbiol 53(2):224–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Walter V, Syldatk C, Hausmann R (2010) Screening concepts for the isolation of biosurfactant producing microorganisms. In: Biosurfactants, p 1–13

  22. Razafindralambo H, Paquot M, Hbid C, Jacques P, Destain J, Thonart P (1993) Purification of antifungal lipopeptides by reversed-phase high-performance liquid chromatography. J Chromatogr A 639(1):81–85

    Article  CAS  Google Scholar 

  23. Urzì C, Brusetti L, Salamone P, Sorlini C, Stackebrandt E, Daffonchio D (2001) Biodiversity of Geodermatophilaceae isolated from altered stones and monuments in the Mediterranean basin. Environ Microbiol 3(7):471–479

    Article  PubMed  Google Scholar 

  24. Ström K, Sjögren J, Broberg A, Schnürer J (2002) Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo (L-Phe-L-Pro) and cyclo (L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid. Appl Environ Microbiol 68(9):4322–4327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Tzuc JT, Escalante DR, Herrera RR, Cortés GG, Ortiz MLA (2014) Microbiota from Litopenaeus vannamei: digestive tract microbial community of Pacific white shrimp (Litopenaeus vannamei).". Springerplus 3(1):280

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evolution 30(12):2725–2729

    Article  CAS  Google Scholar 

  27. Mandic-Mulec I, Prosser JI (2011) Diversity of endospore-forming bacteria in soil: characterization and driving mechanisms. In: Endospore-forming Soil Bacteria. Springer, p 31–59

  28. Al-Bahry S, Al-Wahaibi Y, Elshafie A, Al-Bemani A, Joshi S, Al-Makhmari H, Al-Sulaimani H (2013) Biosurfactant production by Bacillus subtilis B20 using date molasses and its possible application in enhanced oil recovery. Int Biodeter Biodegr 81:141–146

    Article  CAS  Google Scholar 

  29. Couto C, Alvarez V, Marques J, Jurelevicius D, Seldin L (2015) Exploiting the aerobic endospore-forming bacterial diversity in saline and hypersaline environments for biosurfactant production. BMC Microbiol 15(1):1–17

    Article  CAS  Google Scholar 

  30. Phelan R, O’Halloran J, Kennedy J, Morrissey J, Dobson A, O’Gara F, Barbosa T (2012) Diversity and bioactive potential of endospore-forming bacteria cultured from the marine sponge Haliclona simulans. J Appl Microbiol 112(1):65–78

    Article  CAS  PubMed  Google Scholar 

  31. Aanniz T, Ouadghiri M, Melloul M, Swings J, Elfahime E, Ibijbijen J, Ismaili M, Amar M (2015) Thermophilic bacteria in Moroccan hot springs, salt marshes and desert soils. Braz J Microbiol 46(2):443–453

    Article  PubMed  PubMed Central  Google Scholar 

  32. Tripathi L, Twigg M, Zompra A, Salek K, Irorere VU, Gutierrez T, Spyroulias GA, Marchant R, Banat IM (2019) Biosynthesis of rhamnolipid by a Marinobacter species expands the paradigm of biosurfactant synthesis to a new genus of the marine microflora. Microb Cell Factories 18(1):164

    Article  CAS  Google Scholar 

  33. Phulpoto IA, Yu Z, Bowen H, Ndayisenga F, Jinmei L, Liang H, Qazi MA (2020) Production and characterization of surfactin-like biosurfactant produced by novel strain Bacillus nealsonii S2MT and it’s potential for oil contaminated soil remediation. Microb Cell Factories 19(145):1–12

    Google Scholar 

  34. Rodrigues LR, Teixeira JA, Van Der Mei HC, Oliveira R (2006) Isolation and partial characterization of a biosurfactant produced by Streptococcus thermophilus A. Colloids Surf B Biointerfaces 53(1):105–112

    Article  CAS  PubMed  Google Scholar 

  35. Jacques P (2011) Surfactin and other lipopeptides from Bacillus spp. In: Biosurfactants. Springer, p 57–91

  36. Bodour AA, Drees KP, Maier RM (2003) Distribution of biosurfactant-producing bacteria in undisturbed and contaminated arid southwestern soils. Appl Environ Microbiol 69(6):3280–3287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Agbobatinkpo PB, Thorsen L, Nielsen DS, Azokpota P, Akissoe N, Hounhouigan JD, Jakobsen M (2013) Biodiversity of aerobic endospore-forming bacterial species occurring in Yanyanku and Ikpiru, fermented seeds of Hibiscus sabdariffa used to produce food condiments in Benin. Int J Food Microbiol 163(2–3):231–238

    Article  CAS  PubMed  Google Scholar 

  38. Ndlovu T (2017) Bioprospecting for novel biosurfactants and biosurfactant producing bacteria in wastewater. Doctoral dissertation. Stellenbosch University.

  39. Sharma R, Singh J, Verma N (2018) Production, characterization and environmental applications of biosurfactants from Bacillus amyloliquefaciens and Bacillus subtilis. Biocatal Agric Biotechnol 16:132–139

    Article  Google Scholar 

  40. Oloro J (2018) Effect of pH and API gravity on the water-in-oil emulsion stability. JASEM 22(6):925–928

    Article  CAS  Google Scholar 

  41. Kumar S, Parikh K (2012) Influence of temperature and salt on association and thermodynamic parameters of micellization of a cationic gemini surfactant. J Appl Sol Chem 1(1):65–73

    CAS  Google Scholar 

  42. Ren ZH (2015) Mechanism of the salt effect on micellization of an aminosulfonate amphoteric surfactant. Ind Eng Chem Res 54(40):9683–9688

    Article  CAS  Google Scholar 

  43. Soberón-Chávez G, Maier RM (2011) Biosurfactants: a general overview. In: Biosurfactants. Springer, p 1–11

  44. Bezza F, Chirwa EN (2015) Biosurfactant from Paenibacillus dendritiformis and its application in assisting polycyclic aromatic hydrocarbon (PAH) and motor oil sludge removal from contaminated soil and sand media. Process SAF Environ 98:354–364

    Article  CAS  Google Scholar 

  45. Ines M, Dhouha G (2015) Lipopeptide surfactants: production, recovery and pore forming capacity. Peptides 71:100–112

    Article  CAS  PubMed  Google Scholar 

  46. Lee J, Hao Y, Blair PM, Melby JO, Agarwal V, Burkhart BJ, Nair SK, Mitchell DA (2013) Structural and functional insight into an unexpectedly selective N-methyltransferase involved in plantazolicin biosynthesis. PNAS 110(32):12954–12959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Koumoutsi A, Chen XH, Henne A, Liesegang H, Hitzeroth G, Franke P, Vater J, Borriss R (2004) Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J Bacteriol 186(4):1084–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Singh P, Cameotra SS (2004) Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol 22(3):142–146

    Article  CAS  PubMed  Google Scholar 

  49. Sun L, Lu Z, Bie X, Lu F, Yang S (2006) Isolation and characterization of a co-producer of fengycins and surfactins, endophytic Bacillus amyloliquefaciens ES-2, from Scutellaria baicalensis Georgi. World J Microbiol Biotechnol 22(12):1259–1266

    Article  CAS  Google Scholar 

  50. Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16(3):115–125

    Article  CAS  PubMed  Google Scholar 

  51. Kim P, Bai H, Bai D, Chae H, Chung S, Kim Y, Park R, Chi YT (2004) Purification and characterization of a lipopeptide produced by Bacillus thuringiensis CMB26. J Appl Microbiol 97(5):942–949

    Article  CAS  PubMed  Google Scholar 

  52. Ramarathnam R, Bo S, Chen Y, Fernando WD, Xuewen G, De Kievit T (2007) Molecular and biochemical detection of fengycin-and bacillomycin D-producing Bacillus spp., antagonistic to fungal pathogens of canola and wheat. Can J Microbiol 53(7):901–911

    Article  CAS  PubMed  Google Scholar 

  53. Haddad NI, Wang J, Mu B (2008) Isolation and characterization of a biosurfactant producing strain, Brevibacilis brevis HOB1. J Ind Microbiol Biotechnol 35(12):1597–1604

    Article  CAS  PubMed  Google Scholar 

  54. Kim PI, Ryu J, Kim YH, Chi YT (2010) Production of biosurfactant lipopeptides Iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides.". J Microbiol Biotechnol 20(1):138–145

    Article  CAS  PubMed  Google Scholar 

  55. Geetha I, Manonmani A, Paily K (2010) Identification and characterization of a mosquito pupicidal metabolite of a Bacillus subtilis subsp. subtilis strain. Appl Microbiol Biotechnol 86(6):1737–1744

    Article  CAS  PubMed  Google Scholar 

  56. Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34(6):1037–1062

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

All the authors have agreed to submit this manuscript to the “Journal of Current Microbiology.” The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Contributions

F.A conceived the original draft of the manuscript, review, and editing. C.H conceived the study, analysis, investigation, review, editing, and supervision.

Corresponding author

Correspondence to Folasade A. Adu.

Ethics declarations

Ethical Approval

This article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adu, F.A., Hunter, C.H. Screening and Identification of Lipopeptide Biosurfactants Produced by Two Aerobic Endospore-Forming Bacteria Isolated from Mfabeni Peatland, South Africa. Curr Microbiol 78, 2615–2622 (2021). https://doi.org/10.1007/s00284-021-02516-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02516-7

Navigation