Skip to main content
Log in

Characterization of Novel Bacteriophage AhyVDH1 and Its Lytic Activity Against Aeromonas hydrophila

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Phage therapy is an alternative approach to overcome the problem of multidrug-resistant bacteria. Here, a novel bacteriophage AhyVDH1, which infects Aeromonas hydrophila 4572, was isolated and its morphology, one-step growth curve, lytic activity, stability under various conditions, and genome were investigated. Transmission electron microscopy revealed that AhyVDH1 has an icosahedral head 49 nm in diameter and a contractile tail 127 nm in length, suggesting that it belongs to the family Myoviridae. AhyVDH1 showed strong adsorption to the surface of A. hydrophila 4572 (90% in 10 min). The latent period of AhyVDH1 was shown to be 50 min, and the burst size was 274 plaque-forming unit/infected cell. AhyVDH1 was stable at 30 °C for 1 h and lost infectivity after20 min of heating at 60 °C. Infectivity remained unaffected at pH 6–7 for 1 h, while the bacteriophage was inactivated at pH < 4 or > 11. AhyVDH1 has a 39,175-bp genome, with a 58% G + C content and 59 open reading frames. BLAST analysis indicated that the genome sequence of phage AhyVDH1 was related to that of Aeromonas phage Ahp2. Both time and MOI-dependent in vitro A. hydrophila growth inhibition were observed with AhyVDH1.Re-growth of the host bacteria appeared about 12 h after treatment, suggesting its potential therapeutic value in treating A. hydrophila infections, but phage cocktails should be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Batra P, Mathur P, Misra MC (2016) Aeromonas spp.: an emerging nosocomial pathogen. J Lab Phys 8(1):1–4. https://doi.org/10.4103/0974-2727.176234

    Article  CAS  Google Scholar 

  2. Danaher PJ, Mueller WP (2011) Aeromonas hydrophilaseptic arthritis. Mil Med 176(12):1444–1446. https://doi.org/10.7205/MILMED-D-11-00211

    Article  PubMed  Google Scholar 

  3. Lai CC, Shiao CC, Lu GD, Ding LW (2007) Aeromonas hydrophila and Aeromonas sobria bacteremia: rare pathogens of infection in a burn patient. Burns 33(2):255–257. https://doi.org/10.1016/j.burns.2006.06.003

    Article  PubMed  Google Scholar 

  4. Liakopoulos V, Arampatzis S, KourtiP TT, Zarogiannis S, Eleftheriadis T et al (2011) Aeromonas hydrophila as a causative organism in peritoneal dialysis-related peritonitis: case report and review of the literature. Clin Nephrol 75:65–68. https://doi.org/10.2379/CNP75065

    Article  PubMed  Google Scholar 

  5. Joseph SW, Carnahan A (1994) The isolation, identification, and systematics of the Motile Aeromonas species. Annu Rev Fish Dis 4:315–343. https://doi.org/10.1016/0959-8030(94)90033-7

    Article  Google Scholar 

  6. Wang JB, Lin NT, Tseng YH, Weng SF (2016) Genomic characterization of the novel Aeromonas hydrophilaphage Ahp1 suggests the derivation of a new subgroup from phiKMV-Like family. PLoS ONE 11(9):e0162060. https://doi.org/10.1371/journal.pone.0162060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jun JW, Kim JH, Shin SP, Han JE, Chai JY, Park SC (2013) Protective effects of the Aeromonas phages pAh1-C and pAh6-C against mass mortality of the cyprinid loach (Misgurnus anguillicaudatus) caused by Aeromonas hydrophila. Aquaculture 416–417:289–295. https://doi.org/10.1016/j.aquaculture.2013.09.045

    Article  Google Scholar 

  8. Huang C, Shi J, Ma W, Li Z, Wang J, Li J, Wang X (2018) Isolation, characterization, and application of a novel specific Salmonella bacteriophage in different food matrices. Food Res Int 111:631–641. https://doi.org/10.1016/j.foodres.2018.05.071

    Article  CAS  PubMed  Google Scholar 

  9. Chen L, Yuan S, Liu Q, Mai G, Yang J, Deng D, Zhang B, Liu C, Ma Y (2018) In vitro design and evaluation of phage cocktails against Aeromonas salmonicida. Front Microbiol 9:1476. https://doi.org/10.3389/fmicb.2018.01476

    Article  PubMed  PubMed Central  Google Scholar 

  10. Easwaran M, Dananjaya SHS, Park SC, Lee J, Shin HJ, De Zoysa M (2017) Characterization of bacteriophage pAh-1 and its protective effects on experimental infection of Aeromonas hydrophila in Zebrafish (Danio rerio). J Fish Dis 40(6):841–846. https://doi.org/10.1111/jfd.12536

    Article  CAS  PubMed  Google Scholar 

  11. Hoang AH, Tran TTX, Le PN, Dang THO (2019) Selection of phages to control Aeromonas hydrophila– an infectious agent in striped catfish. Biocontrol Sci 24(1):23–28. https://doi.org/10.4265/bio.24.23

    Article  Google Scholar 

  12. Chandrarathna HPSU, Nikapitiya C, Dananjaya SHS, De Silva BCJ, Heo G-J, De Zoysa M, Lee J (2020) Isolation and characterization of phage AHP-1 and its combined effect with chloramphenicol to control Aeromonas hydrophila. Braz J Microbiol 51(1):409–416. https://doi.org/10.1007/s42770-019-00178-z

    Article  CAS  PubMed  Google Scholar 

  13. Kabwe M, Brown T, Speirs L, Ku H, Leach M, Chan HT, Petrovski S, Lock P, Tucci J (2020) Novel bacteriophages capable of disrupting biofilms from clinical strains of Aeromonas hydrophila. Front Microbiol 11:194. https://doi.org/10.3389/fmicb.2020.00194

    Article  PubMed  PubMed Central  Google Scholar 

  14. Akmal M, Rahimi-Midani A, Hafeez-ur-Rehman M, Hussain A, Choi T-J (2020) Isolation, characterization, and application of a bacteriophage infecting the fish pathogen Aeromonas hydrophila. Pathogens 9(3):215. https://doi.org/10.3390/pathogens9030215

    Article  CAS  PubMed Central  Google Scholar 

  15. Bai M, Cheng YH, Sun XQ, Wang ZY, Wang YX, Cui XL, Xiao W (2019) Nine novel phages from a plateau lake in Southwest China: insights into Aeromonas phage diversity. Viruses 11(7):615. https://doi.org/10.3390/v11070615

    Article  CAS  PubMed Central  Google Scholar 

  16. Zhang S, Fan C, Xia Y, Li M, Wang Y, Cui X, Xiao W (2019) Characterization of a novel bacteriophage specific to Exiguobacterium indicum isolated from a plateau eutrophic lake. J Basic Microbiol 59(2):206–214. https://doi.org/10.1002/jobm.201800184

    Article  CAS  PubMed  Google Scholar 

  17. Eisenstark A (1967) Bacteriophage techniques. In: Maramorsch K, Koprowski H (eds) Methods in virology. Academic Press, New York, pp 449–524

    Google Scholar 

  18. Stenholm AR, Dalsgaard I, Middelboe M (2008) Isolation and characterization of bacteriophages infecting the fish pathogen Flavobacterium psychrophilum. Appl Environ Microbiol 74(13):4070–4078. https://doi.org/10.1128/AEM.00428-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fu CQ, Zhao Q, Li ZY, Wang YX, Zhang SY, Lai YH, Xiao W, Cui XL (2016) A novel Halomonas ventosae-specific virulent halovirus isolated from the Qiaohou salt mine in Yunnan, Southwest China. Extremophiles 20(1):101–110. https://doi.org/10.1007/s00792-015-0802-x

    Article  CAS  PubMed  Google Scholar 

  20. Lu Z, Breidt F, Fleming HP et al (2003) Isolation and characterization of a Lactobacillus plantarum bacteriophage, ΦJL-1, from a cucumber fermentation. Int J Food Microbiol 84(2):225–235. https://doi.org/10.1016/S0168-1605(03)00111-9

    Article  CAS  PubMed  Google Scholar 

  21. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477. https://doi.org/10.1089/cmb.2012.0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. John B, Alexandre L, Mark B (2001) GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 29(12):2607–2618. https://doi.org/10.1093/nar/29.12.2607

    Article  Google Scholar 

  23. Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402. https://doi.org/10.1093/nar/25.17.3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Laslett D, Canback B (2004) ARAGORN, a program for the detection of transfer RNA and transfer-messenger RNA genes in nucleotide sequences. Nucleic Acids Res 32:11–16. https://doi.org/10.1093/nar/gkh152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sudhir K, Glen S, Koichiro T (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054

    Article  CAS  Google Scholar 

  26. Sullivan MJ, Petty NK, Beatson SA (2011) Easyfig: a genome comparison visualizer. Bioinformatics 27(7):1009–1010. https://doi.org/10.1093/bioinformatics/btr039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Muturi P, Yu J, Maina AN, Kariuki S, Mwaura FB, Wei H (2019) Bacteriophages isolated in China for the control of Pectobacterium carotovorum causing potato soft rot in Kenya. Virol Sin 34(3):287–294. https://doi.org/10.1007/s12250-019-00091-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rodriguez I, Novoa B, Figueras A (2008) Immune response of zebrafish (Danio rerio) against a newly isolated bacterial pathogen Aeromonas hydrophila. Fish Shellfish Immunol 25(3):239–249. https://doi.org/10.1016/j.fsi.2008.05.002

    Article  CAS  PubMed  Google Scholar 

  29. Lee SW, Wendy W (2017) Antibiotic and heavy metal resistance of Aeromonas hydrophila and Edwardsiella tarda isolated from red hybrid tilapia (Oreochromis spp.) coinfected with motile aeromonas septicemia and edwardsiellosis. Vet World 10(7):803–807. https://doi.org/10.14202/vetworld.2017.803-807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang Y, Miao P, Li H, Tan S, Yu H, Yu H (2017) Antibiotic susceptibility and molecular characterization of Aeromonas hydrophila from grass carp. J Food Saf 38(1):e12393. https://doi.org/10.1111/jfs.12393

    Article  CAS  Google Scholar 

  31. Jun JW, Kim JH, Gomez D, Choresca CH, Shin SP, Park SC (2010) Occurrence of tetracycline-resistant Aeromonas hydrophila infection in Korean cyprinid loach (Misgurnus anguillicaudatus). African J Microbiol Res 4(9):849–855. https://doi.org/10.1016/j.enzmictec.2009.12.017

    Article  CAS  Google Scholar 

  32. Yuan SJ, Chen L, Liu Q, Zhou Y, Yang JF, Deng D et al (2018) Characterization and genomic analyses of Aeromonas hydrophila phages AhSzq-1 and AhSzw-1, isolates representing new species within the T5virus genus. Arch Virol 163(7):1985–1988. https://doi.org/10.1007/s00705-018-3805-y

    Article  CAS  PubMed  Google Scholar 

  33. El-Araby DA, El-Didamony G, Megahed MTH (2016) New approach to use phage therapy against Aeromonas hydrophilainduced motile aeromonas septicemia in Nile Tilapia. J Mar Sci Res Dev 6(3):194. https://doi.org/10.4172/2155-9910.1000194

    Article  Google Scholar 

  34. Kim JH, Son JS, Choi YJ, Choresca CH, Shin SP, Han JE et al (2012) Isolation and characterization of a lytic Myoviridae bacteriophage PAS-1 with broad infectivity in Aeromonas salmonicida. Curr Microbiol 64(5):418–426. https://doi.org/10.1007/s00284-012-0091-x

    Article  CAS  PubMed  Google Scholar 

  35. Housby JN, Mann NH (2009) Phage therapy. Drug Discov Today 14:536–540. https://doi.org/10.1016/j.drudis.2009.03.006

    Article  CAS  PubMed  Google Scholar 

  36. Lu WK, Yu LX, Ou XK, Li FR (2017) Relationship between occurrence frequency of cyanobacteria bloom and meteorological factors in Lake Dianchi. J Lake Sci 29:534–545. https://doi.org/10.18307/2017.0302

    Article  Google Scholar 

  37. Altamirano FLG, Barr JJ (2019) Phage therapy in the postantibiotic era. Clin Microbiol Rev. https://doi.org/10.1128/CMR.00066-18

    Article  Google Scholar 

  38. Vincent AT, Paquet VE, Bernatchez A, Tremblay DM, Moineau S, Charette SJ (2017) Characterization and diversity of phages infecting Aeromonas salmonicida subsp. salmonicida. Sci Rep 7(1):7054. https://doi.org/10.1038/s41598-017-07401-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Luo X, Liao G, Liu C, Jiang X, Lin M, Zhao C, Tao J, Huang Z (2018) Characterization of bacteriophage HN48 and its protective effects in Nile tilapia Oreochromis niloticus against Streptococcus agalactiae infections. J Fish Dis 41(10):1477–1484. https://doi.org/10.1111/jfd.12838

    Article  CAS  PubMed  Google Scholar 

  40. Le TS, Nguyen TH, Vo HP, Doan VC, Nguyen HL, Tran MT, Tran TT, Southgate PC, Kurtböke Dİ (2018) Protective effects of bacteriophages against Aeromonas hydrophila causing Motile Aeromonas Septicemia (MAS) in striped catfish. Antibiotics 7(1):16. https://doi.org/10.3390/antibiotics701001

    Article  PubMed Central  Google Scholar 

Download references

Funding

This funding was supported by National Natural Science Foundation of China [Grant Nos. 31660042, 31660001, 31660089, 32071570] and Yunnan Provincial Science and Technology Department [Grant No. 2018IA100].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shiying Zhang or Wei Xiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 49 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Gao, D., Xia, Y. et al. Characterization of Novel Bacteriophage AhyVDH1 and Its Lytic Activity Against Aeromonas hydrophila. Curr Microbiol 78, 329–337 (2021). https://doi.org/10.1007/s00284-020-02279-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02279-7

Navigation