Skip to main content
Log in

Characterization of Bacterial Communities Associated with Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae) and its Host Phoenix sylvestris

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

This study measured the changes of microorganisms in the midgut and habitat niche of Rhynchophorus ferrugineus Olivier, an invasive quarantine pest, by Illumina sequencing. The bacterial diversity in the R. ferrugineus larvae midgut and their habitat niche was compared to the uninfected P. sylvestris. The Proteobacteria and Firmicutes occupied a dominant position in the R. ferrugineus midgut and infected P. sylvestris, while in the uninfected P. sylvestris the predominant bacterial phylum was the Cyanobacteria. Enterobacter, Dysgonomonas, and Entomoplasma were the dominant bacterial genera in R. ferrugineus midgut and also within the infected trees and uninfected trees with low relative abundance. These bacteria could be exploited as the biopesticide vector to control R. ferrugineus population. Besides, Sphingobacterium, Shinella, and Rhodobacter genera had the same distribution pattern in the infected and uninfected P. sylvestris, and these bacteria were not found in the midgut of R. ferrugineus. Interestingly, Paludibacter and Parabacteroides were only distributed in the wood fiber of the infected P. sylvestris, which could be used as potential microbial markers to detect if the palm plants are damaged by the R. ferrugineus. The results of this study will be beneficial to the development of control strategies for R. ferrugineus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Murphy ST, Briscoe BR (1999) The red palm weevil as an alien invasive: biology and the prospects for biological control as a component of IPM. Biocontrol News Inf 1:364–366

    Google Scholar 

  2. Anonymous (2010) Data sheets on quarantine pests. Eppo Bull 29(4):497–501

  3. Faleiro JR (2006) A review of the issues and management of the red palm weevil Rhynchophorus ferrugineus (Coleoptera: Rhynchophoridae) in coconut and date palm during the last one hundred years. Int J Trop Insect Sci 26(3):135–154

    CAS  Google Scholar 

  4. Amots H, Victoria S, Yuval C (2016) Toward practical acoustic red palm weevil detection. Comput Electron Agric 124:100–106

    Google Scholar 

  5. Al-Ajlan AM (2005) Red palm weevil, Rhynchophorus Ferrugineus (Olivier) (Coleoptera: Curculionidae). Encyclopedia of entomology. Springer, Dordrecht, pp 1877–1879. https://doi.org/10.1007/0-306-48380-7_3606

    Book  Google Scholar 

  6. Oerke EC, Dehne HW (2004) Safeguarding production—losses in major crops and the role of crop protection. Crop Protect 23(4):275–285

    Google Scholar 

  7. Xu LT, Deng JD, Zhou FY, Cheng CH, Zhang LW, Zhang J, Lu M (2018) Gut microbiota in an invasive bark beetle infected by a pathogenic fungus accelerates beetle mortality. J Pest Sci 92(1):343–351

    Google Scholar 

  8. Wei G, Lai YL, Wang GD, Chen H, Li F, Wang SB (2017) Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality. PNAS. https://doi.org/10.1073/pnas.1703546114

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wang SB, Ghosh AK, Bongio N, Stebbings KA, Lampe DJ, Jacobs-Lorena M (2012) Fighting malaria with engineered symbiotic bacteria from vector mosquitoes. Proc Natl Acad Sci 109(31):12734–12739

    PubMed  CAS  PubMed Central  Google Scholar 

  10. Wang SB, Dos-Santos ALA, Huang W, Liu KC, Oshaghi MA, Wei G, Agre P, Jacobs-Lorena M (2017) Driving mosquito refractoriness to Plasmodium falciparum with engineered symbiotic bacteria. Science 357(6358):1399–1402

    PubMed  CAS  Google Scholar 

  11. Kaltenpoth M, Engl T (2014) Defensive microbial symbionts in hymenoptera. Funct Ecol 28(2):315–327

    Google Scholar 

  12. Cox-Foster DL, Conlan S, Holmes EC, Palacios G, Evans JD, Moran NA, Quan PL, Briese T, Hornig M, Geiser DM, Martinson V, Dennis VE, Kalkstein AL, Drysdale A, Hui J, Zhai JH, Cui LW, Hutchison SK, Simons JF, Egholm M, Pettis JS, Lipkin WI (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318(5848):283–287

    PubMed  CAS  Google Scholar 

  13. Vasileiadis S, Puglisi E, Arena M, Cappa F, Cocconcelli PS, Trevisan M (2012) Soil bacterial diversity screening using single 16S rRNA gene V regions coupled with multi-million read generating sequencing technologies. PLoS ONE 7(8):e42671

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Yang CY, Li Y, Zhou B, Zhou YY, Zheng W, Tian Y, Van Nostrand JD, Wu LY, He ZL, Zhou JZ (2015) Illumina sequencing-based analysis of free-living bacterial community dynamics during an Akashiwo sanguine bloom in Xiamen sea. China Sci Rep 5:8476

    PubMed  CAS  Google Scholar 

  15. Tang JY, Ma J, Li XD, Li YH (2016) Illumina sequencing-based community analysis of bacteria associated with different bryophytes collected from Tibet. China BMC Microbiol 16(1):276

    PubMed  Google Scholar 

  16. Zhou J (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62(2):316–322

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Magoc T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957–2963

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16):2194–2200

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461

    PubMed  CAS  Google Scholar 

  21. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Parks DH, Tyson GW (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30(21):3123–3124

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Pullerits T, Chachisvilis M, Sundström V (1996) Exciton delocalization length in the B850 antenna of Rhodobacter sphaeroides. J Phys Chem 100(25):10787–10792

    CAS  Google Scholar 

  24. Liang F, Xiao Y, Zhao F (2013) Effect of pH on sulfate removal from wastewater using a bioelectrochemical system. Chem Eng J 218:147–153

    CAS  Google Scholar 

  25. Koh G, Kane AV, Lee K, Xu Q, Wu X, Mason JB, Crott JW (2017) Parabacteroides distasonis attenuates colonic inflammation and prevents tumor formation in azoxymethane-treated high-fat diet-fed mice. FASEB J 31(1):435–442

    Google Scholar 

  26. Hooper LV (2001) Commensal host-bacterial relationships in the gut. Science 292(5519):1115–1118

    PubMed  CAS  Google Scholar 

  27. Muhammad A, Fang Y, Hou Y, Shi Z (2017) The gut entomotype of red palm weevil Rhynchophorus ferrugineus olivier (Coleoptera: Dryophthoridae) and their effect on host nutrition metabolism. Front Microbiol 8:2291–2305

    PubMed  PubMed Central  Google Scholar 

  28. Tagliavia M, Messina E, Manachini B, Cappello S, Quatrini P (2014) The gut microbiota of larvae of Rhynchophorus ferrugineus Oliver (Coleoptera: Curculionidae). BMC Microbiol 14(1):136

    PubMed  PubMed Central  Google Scholar 

  29. Moriya O, Satoko N, Yuichi H, Toshiaki K (2002) Diverse bacteria related to the bacteroides subgroup of the CFB phylum within the gut symbiotic communities of various termites. J Agric Chem Soc Jpn 66(1):78–84

    Google Scholar 

  30. Haynes S, Darby AC, Daniell TJ, Webster G, van Veen FJF, Godfray HCJ, Prosser JI, Douglas AE (2003) Diversity of bacteria associated with natural aphid populations. Appl Environ Microbiol 69(12):7216–7223

    PubMed  PubMed Central  CAS  Google Scholar 

  31. Broderick NA, Raffa KF, Handelsman J (2006) Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc Natl Acad Sci USA 103(41):15196–15199

    PubMed  CAS  PubMed Central  Google Scholar 

  32. Hui XA, Wei GF, Jia SH, Huang JH, Miao XX, Zhou ZH, Zhao LP, Huang YP (2006) Microbial communities in the larval midgut of laboratory and field populations of cotton bollworm (Helicoverpa armigera ). Can J Microbiol 52(6):23–24

    Google Scholar 

  33. Shinzato N, Muramatsu M, Matsui T, Watanabe Y (2007) Phylogenetic analysis of the gut bacterial microflora of the fungus-growing termite Odontotermes formosanus. Biosci Biotechnol Biochem 71:906–915

    PubMed  CAS  Google Scholar 

  34. Kersters K, Vos PD, Gillis M, Swings J, Vandamme P, Stackebrandt E (2006) Introduction to the Proteobacteria. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes, vol 5. Springer, New York

    Google Scholar 

  35. Zhang JH, Yu N, Xu XX, Liu ZW (2018) Community structure, dispersal ability and functional profiling of microbiome existing in fat body and ovary of the brown planthopper, Nilaparvata lugens. Insect Sci 26(4):683–694

    PubMed  Google Scholar 

  36. Engel P, Moran NA (2013) The gut microbiota of insects—diversity in structure and function. FEMS Microbiol Rev 37(5):699–735

    PubMed  CAS  Google Scholar 

  37. Butera G, Ferraro C, Colazza S, Alonzo G, Quatrini P (2012) The culturable bacterial community of frass produced by larvae of Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae) in the Canary island date palm. Lett Appl Microbiol 54:530–536

    PubMed  CAS  Google Scholar 

  38. Dillon RJ, Vennard CT, Charnley AK (2010) Diversity of locust gut bacteria protects against pathogen invasion. Ecol Lett 8(12):1291–1298

    Google Scholar 

  39. Desai MS, Brune A (2012) Bacteroidales ectosymbionts of gut flagellates shape the nitrogen-fixing community in dry-wood termites. ISME J 6(7):1302–1313

    PubMed  CAS  Google Scholar 

  40. Dey R, Joshi AB, Oliveira F, Pereira L, Guimares-Costa AB, Serafim TD, de Castro W, Coutinho-Abreu IV, Bhattacharya P, Townsend S (2017) Gut microbes egested during bites of infected sand flies augment severity of Leishmaniasis via Inflammasome-Derived IL-1β. Cell Host Microbe 23(1):134–143

    PubMed  PubMed Central  Google Scholar 

  41. Aksoy S (2017) Insect gut microbiota: accessories to the bite. Cell Host Microbe 23(1):8–9

    Google Scholar 

  42. Rod D, Keith C (2002) Mutualism between the desert locust Schistocerca gregaria and its gut microbiota. Res Microbiol 153(8):503–509

    Google Scholar 

  43. Broderick NA, Raffa KF, Goodman RM, Handelsman J (2004) Census of the bacterial community of the Gypsy Moth larval midgut using culturing and culture-independent methods. Appl Environ Microbiol 70(1):293–300

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Husseneder C, Berestecky JM, Grace JK (2009) Changes in composition of culturable bacteria community in the gut of the formosan subterranean termite depending on rearing conditions of the host. Ann Entomol Soc Am 102(3):498–507

    Google Scholar 

  45. Carda-Diéguez M, Mira A, Fouz B (2014) Pyrosequencing survey of intestinal microbiota diversity in cultured sea bass Dicentrarchus labrax fed functional diets. FEMS Microbiol Ecol 87(2):451–459

    PubMed  Google Scholar 

  46. Minard G, Tran F-H, Dubost A, Tran-Van V, Mavingui P, Valiente Moro C (2014) Pyrosequencing 16S rRNA genes of bacteria associated with wild tiger mosquito Aedes albopictus: a pilot study. Front Cell Infect Microbiol 4:59

    PubMed  PubMed Central  Google Scholar 

  47. Tully JG, Whitcomb RF, Hackett KJ, Williamson DL, Laigret F, Carle P, Bové JM, Henegar RB, Ellis NM, Dodge DE (1998) Entomoplasma freundtii sp. nov., a new species from a green tiger beetle (Coleoptera: Cicindelidae). Int J Syst Bacteriol 48(4):1197–1204

    PubMed  Google Scholar 

  48. Douglas AE (2015) Multiorganismal Insects: diversity and function of resident microorganisms. Annu Rev Entomol 60(1):17–34

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by National Key Research and Development Program of China, Grant Number 2017YFD0600105; National Natural Science Foundation of China, Grant Number U1905201; National Natural Science Foundation of China, grant number 31601905; Science Fund for Distinguished Young Scholars of Fujian Agriculture and Forestry University, Grant Number xjq201614; China Postdoctoral Science Foundation, Grant Number 2017M612107; Science and Technology Program of Fujian Province, Grant Number 2018N5002; Forestry Science Research Project of Fujian Forestry Department, Grant Number Minlinke (2017) 03; Forest Science Peak Project of College of Forestry, Fujian Agriculture and Forestry University, Grant Numbers 71201800720, 71201800753, 71201800779; Undergraduate Training Program for Innovation and Entrepreneurship of China, Grant Number 201910389009.

Author information

Authors and Affiliations

Authors

Contributions

SQZ, SQW and FPZ contributed to the conception and design of the study; QLL, JSZ and YW obtained the metagenome samples; QLL, YJG, and LJS performed the data analysis; QLL, YJG, SQW, YW, and RCL drafted the manuscript; and QLL, SQW, and YJG reviewed the manuscript. All authors read and approved the submitted version.

Corresponding authors

Correspondence to Songqing Wu or Shuangquan Zou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6575 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, Q., Guo, Y., Zhou, J. et al. Characterization of Bacterial Communities Associated with Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae) and its Host Phoenix sylvestris. Curr Microbiol 77, 3321–3329 (2020). https://doi.org/10.1007/s00284-020-02196-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02196-9

Navigation