Skip to main content
Log in

Streptomyces songpinggouensis sp. nov., a Novel Actinomycete Isolated from Soil in Sichuan, China

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

During a screening for novel and biotechnologically useful actinobacteria, a novel actinobacteria with weak antifungal activity, designated strain NEAU-Spg19T, was isolated from a soil sample collected from pine forest in Songpinggou, Sichuan, southwest China. The strain was characterized using a polyphasic taxonomic approach which confirmed that it belongs to the genus Streptomyces. Growth occurred at a temperature range of 10–30 °C, pH 5.0–11.0 and NaCl concentrations of 0–5 %. The cell wall peptidoglycan consisted of LL-diaminopimelic acid and glycine. The major menaquinones were MK-9(H6), MK-9(H8) and MK-9(H4). The phospholipid profile contained diphosphatidylglycerol (DPG), phosphatidylethanolamine and phosphatidylinositol. The major fatty acids were iso-C15:0, iso-C16:0, and C16:0. 16S rRNA gene sequence similarity studies showed that strain NEAU-Spg19T belongs to the genus Streptomyces with the highest sequence similarities to Streptomyces tauricus JCM 4837T (98.6 %) and Streptomyces rectiviolaceus JCM 9092T (98.3 %). Some physiological and biochemical properties and low DNA–DNA relatedness values enabled the strain to be differentiated from S. tauricus JCM 4837T and S. rectiviolaceus JCM 9092T. Hence, on the basis of phenotypic and genetic analyses, it is proposed that strain NEAU-Spg19T represents a novel species of the genus Streptomyces, for which the name Streptomyces songpinggouensis sp. nov. is proposed. The type strain is NEAU-Spg19T (=CGMCC 4.7140T=DSM 42141T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Waksman SA, Henrici AT (1943) The nomenclature and classification of the actinobacterias. J Bacteriol 46:337–34130

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Lechevalier MP, Lechevalier HA (1980) The chemotaxonomy of actinobacterias. In: Dietz A, Thayer DW (eds) Actinobacteria taxonomy special publication, vol 6. Society of Industrial Microbiology, Arlington, pp 227–291

    Google Scholar 

  3. Mendes R, Kruijt M, De Bruijn I et al (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097

    Article  CAS  PubMed  Google Scholar 

  4. Williams ST, Goodfellow M, Alderson G, Wellington EMH, Sneath PHA, Sackin MJ (1983) Numerical classification of Streptomyces and related genera. J Gen Microbiol 129:1743–1813

    CAS  PubMed  Google Scholar 

  5. Goodfellow M, Fiedler HP (2010) A guide to successful bio-prospecting: informed by actinobacterial systematics. Antonie Van Leeuwenhoek 98:119–142

    Article  PubMed  Google Scholar 

  6. Broach JR, Thorner J (1996) High-throughput screening for drug discovery. Nature 384(6604):14–16

    Article  CAS  PubMed  Google Scholar 

  7. Fiedler HP (1993) Biosynthetic capacities of actinobacterias. 1 screening for secondary metabolites by HPLC and UV-visible absorbance spectral libraries. Nat Prod Lett 2(2):119–128

    Article  CAS  Google Scholar 

  8. Balagurunathan R, Radhakrishnan M (2007) Actinobacterias: diversity and their importance. In: Trivedi PC (ed) Microbiology-applications and current trends. Pointer Publishers, Jaipur, pp 297–329

    Google Scholar 

  9. Xu XN, Wang LS (2002) Mountain hazard caused by earthquake in Songping River upper Minjiang and its controlling. Chin J Geol Hazard Control 13:31–35

    Google Scholar 

  10. Hayakawa M, Nonomura H (1987) Humic acid-vitamin agar, a new medium for selective isolation of soil actinobacterias. J Ferment Technol 65:501–509

    Article  CAS  Google Scholar 

  11. Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int Syst Bacteriol 16:313–340

    Article  Google Scholar 

  12. Kelly KL (1964) Inter-society color council-national bureau of standards color-name charts illustrated with centroid colors. US Government Printing Office, Washington, DC

    Google Scholar 

  13. Xie QY, Lin HP, Li L (2012) Verrucosispora wenchangensis sp. nov., isolated from mangrove soil. Antonie Van Leeuwenhoek 102:1–7

    Article  PubMed  Google Scholar 

  14. Smibert RM, Krieg NR (1994) Phenotypic characterization. In: Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, pp 607–654

    Google Scholar 

  15. Am Yokota, Tamura T, Hasegawa T (1993) Catenuloplanes japonicas gen. nov., sp. nov., nom. rev., a new genus of the order Actinomycetales. Int J Syst Bacteriol 43:805–812

    Article  Google Scholar 

  16. Minnikin DE, O’Donnell AG, Goodfellow M et al (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  17. McKerrow J, Vagg S, McKinney T et al (2000) Simple HPLC method for analysing diaminopimelic acid diastereomers in cell walls of Gram-positive bacteria. Lett Appl Microbiol 30:178–182

    Article  CAS  PubMed  Google Scholar 

  18. Collins MD (1985) Isoprenoid quinone analyses in bacterial classification and identification. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic Press, London, pp 267–284

    Google Scholar 

  19. Wu C, Lu X, Qin M (1989) Analysis of menaquinone compound in microbial cells by HPLC. Microbiology 16:176–178 (English translation of Microbiology (Beijing))

    CAS  Google Scholar 

  20. Gao RX, Liu CX, Zhao JW et al (2014) Micromonospora jinlongensis sp. nov., isolated from muddy soil in China and emended description of the genus Micromonospora. Antonie Van Leeuwenhoek 105:307–315

    Article  CAS  PubMed  Google Scholar 

  21. Xiang WS, Liu CX, Wang XJ (2011) Actinoalloteichus nanshanensis sp. nov., isolated from the rhizosphere of a fig tree (Ficus religiosa). Int J Syst Evol Microbiol 61:1165–1169

    Article  CAS  PubMed  Google Scholar 

  22. Kim SB, Brown R et al (2000) Gordonia amicalis sp. nov., a novel dibenzothiophene-desulphurizing actinobacteria. Int J Syst Evol Microbiol 50:2031–2036

    Article  CAS  PubMed  Google Scholar 

  23. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  24. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  25. Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  27. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  28. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  29. Kim OS, Cho YJ, Lee K et al (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721

    Article  CAS  PubMed  Google Scholar 

  30. Mandel M, Marmur J (1968) Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12:195–206

    Article  CAS  Google Scholar 

  31. De Ley J, Cattoir H, Reynaerts A (1970) The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142

    Article  PubMed  Google Scholar 

  32. Huss VAR, Festl H, Schleifer KH (1983) Studies on the spectrometric determination of DNA hybridisation from renaturation rates. Syst Appl Microbiol 4:184–192

    Article  CAS  PubMed  Google Scholar 

  33. Wayne LG, Brenner DJ, Colwell RR (1987) International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the National Outstanding Youth Foundation (No. 31225024), the National Key Technology R&D Program (No. 2012BAD19B06), the National Natural Science Foundation of China (Nos. 31471832, 31171913, 31500010, 31572070 and 31372006) and Chang Jiang Scholar Candidates Program for Provincial Universities in Heilongjiang (CSCP).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangjing Wang or Wensheng Xiang.

Additional information

Xuejiao Guan and Wenchao Li have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2572 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, X., Li, W., Liu, C. et al. Streptomyces songpinggouensis sp. nov., a Novel Actinomycete Isolated from Soil in Sichuan, China. Curr Microbiol 73, 796–801 (2016). https://doi.org/10.1007/s00284-016-1128-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-016-1128-3

Keywords

Navigation