Skip to main content

Advertisement

Log in

Comparative Proteomic Analyses of Streptococcus suis Serotype 2 Cell Wall-Associated Proteins

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Streptococcus suis serotype 2 (SS2) is a zoonotic pathogen that is distributed throughout the world. Virulence factors and/or markers of the virulent serotype 2 strains have not been fully identified. In this study a simple, rapid, and non-destructive method was used to extract cell wall-associated proteins from SS2 strains. Two virulent strains were compared with one avirulent strain by 2-dimensional electrophoresis (2DE). When the results of the 2DE analyses were combined with the results of mass spectrometry analyses, a total of 40 unique proteins were identified, including 26 antigens (2DE immunoblotting was used as a preliminary study). In addition to a known virulence factor, muramidase-released protein, two new proteins, catabolite control protein A and leucyl aminopeptidase, and nine potential virulence factors were also identified. The formers may be a potential virulence regulator or drug target, and the latter contains plasminogen-binding proteins and molecular chaperones. Our results complemented previous immunoproteomics studies of SS2 strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

SS2:

Streptococcus suis serotype 2

MALDI-TOF-MS:

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

PGM:

Putative phosphoglycerate mutase

TPI:

Triosephosphate isomerase

PGK:

Phosphoglycerate kinase

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

References

  1. Arends JP, Zanen HC (1988) Meningitis caused by Streptococcus suis in humans. Rev Infect Dis 10:131–137

    CAS  PubMed  Google Scholar 

  2. Ye C, Zhu X, Jing H, Du H, Segura M, Zheng H, Kan B, Wang L, Bai X, Zhou Y, Cui Z, Zhang S, Jin D, Sun N, Luo X, Zhang J, Gong Z, Wang X, Sun H, Li Z, Sun Q, Liu H, Dong B, Ke C, Yuan H, Wang H, Tian K, Wang Y, Gottschalk M, Xu J (2006) Streptococcus suis sequence type 7 outbreak, Sichuan, China. Emerg Infect Dis 12:1203–1208

    PubMed  Google Scholar 

  3. Vecht U, Wisselink HJ, Jellema ML, Smith HE (1991) Identification of two proteins associated with virulence of Streptococcus suis type 2. Infect Immun 59:3156–3162

    CAS  PubMed  Google Scholar 

  4. Li Y, Gottschalk M, Esgleas M, Lacouture S, Dubreuil JD, Willson P, Harel J (2007) Immunization with recombinant Sao protein confers protection against Streptococcus suis infection. Clin Vaccine Immunol 14:937–943

    Article  PubMed  Google Scholar 

  5. Zhang W, Lu CP (2007) Immunoproteomic assay of membrane-associated proteins of Streptococcus suis type 2 China vaccine strain HA9801. Zoonoses Public Health 54:253–259

    Article  CAS  PubMed  Google Scholar 

  6. Zhang W, Lu CP (2007) Immunoproteomics of extracellular proteins of Chinese virulent strains of Streptococcus suis type 2. Proteomics 7:4468–4476

    Article  CAS  PubMed  Google Scholar 

  7. Zhang A, Xie C, Chen H, Jin M (2008) Identification of immunogenic cell wall-associated proteins of Streptococcus suis serotype 2. Proteomics 8:3506–3515

    Article  CAS  PubMed  Google Scholar 

  8. Tavares F, Sellstedt A (2000) A simple rapid and non-destructive procedure to extract cell wall-associated proteins from Frankia. J Microbiol Methods 39:171–178

    Article  CAS  PubMed  Google Scholar 

  9. Schwarz K, Fiedler T, Fischer RJ, Bahl H (2007) A standard operating procedure (SOP) for the preparation of intra- and extracellular proteins of Clostridium acetobutylicum for proteome analysis. J Microbiol Methods 68:396–402

    Article  CAS  PubMed  Google Scholar 

  10. Williams AE, Blakemore WF, Alexander TJ (1988) A murine model of Streptococcus suis type 2 meningitis in the pig. Res Vet Sci 45:394–399

    CAS  PubMed  Google Scholar 

  11. Holt ME, Enright MR, Alexander TJ (1990) Protective effect of sera raised against different fractions of Streptococcus suis type 2. J Comp Pathol 103:85–94

    Article  CAS  PubMed  Google Scholar 

  12. Gottschalk M, Higgins R, Jacques M, Dubreuil D (1992) Production and characterization of two Streptococcus suis capsular type 2 mutants. Vet Microbiol 30:59–71

    Article  CAS  PubMed  Google Scholar 

  13. Quessy S, Dubreuil JD, Caya M, Letourneau R, Higgins R (1994) Comparison of pig, rabbit and mouse IgG response to Streptococcus suis serotype 2 proteins and active immunization of mice against the infection. Can J Vet Res 58:220–223

    CAS  PubMed  Google Scholar 

  14. Esgleas M, Li Y, Hancock MA, Harel J, Dubreuil JD, Gottschalk M (2008) Isolation and characterization of alpha-enolase, a novel fibronectin-binding protein from Streptococcus suis. Microbiology 154:2668–2679

    Article  CAS  PubMed  Google Scholar 

  15. Tanabe S, Grenier D (2009) Endothelial cell/macrophage cocultures as a model to study Streptococcus suis-induced inflammatory responses. FEMS Immunol Med Microbiol 55:100–106

    Article  CAS  PubMed  Google Scholar 

  16. Frisk A, Ison CA, Lagergard T (1998) GroEL heat shock protein of Haemophilus ducreyi: association with cell surface and capacity to bind to eukaryotic cells. Infect Immun 66:1252–1257

    CAS  PubMed  Google Scholar 

  17. Bergonzelli GE, Granato D, Pridmore RD, Marvin-Guy LF, Donnicola D, Corthesy-Theulaz IE (2006) GroEL of Lactobacillus johnsonii La1 (NCC 533) is cell surface associated: potential role in interactions with the host and the gastric pathogen Helicobacter pylori. Infect Immun 74:425–434

    Article  CAS  PubMed  Google Scholar 

  18. Sarma GN, Savvides SN, Becker K, Schirmer M, Schirmer RH, Karplus PA (2003) Glutathione reductase of the malarial parasite Plasmodium falciparum: crystal structure and inhibitor development. J Mol Biol 328:893–907

    Article  CAS  PubMed  Google Scholar 

  19. Yamamoto Y, Kamio Y, Higuchi M (1999) Cloning, nucleotide sequence, and disruption of streptococcus mutans glutathione reductase gene (gor). Biosci Biotechnol Biochem 63:1056–1062

    Article  CAS  PubMed  Google Scholar 

  20. Osaki M, Takamatsu D, Tsuji N, Sekizaki T (2000) Cloning and characterization of the gene encoding O-acetylserine lyase from Streptococcus suis. Curr Microbiol 40:67–71

    Article  CAS  PubMed  Google Scholar 

  21. Iyer R, Baliga NS, Camilli A (2005) Catabolite control protein A (CcpA) contributes to virulence and regulation of sugar metabolism in Streptococcus pneumoniae. J Bacteriol 187:8340–8349

    Article  CAS  PubMed  Google Scholar 

  22. Shelburne SA 3rd, Keith D, Horstmann N, Sumby P, Davenport MT, Graviss EA, Brennan RG, Musser JM (2008) A direct link between carbohydrate utilization and virulence in the major human pathogen group A Streptococcus. Proc Natl Acad Sci USA 105:1698–1703

    Article  CAS  PubMed  Google Scholar 

  23. Chu L, Lai Y, Xu X, Eddy S, Yang S, Song L, Kolodrubetz D (2008) A 52-kDa leucyl aminopeptidase from treponema denticola is a cysteinylglycinase that mediates the second step of glutathione metabolism. J Biol Chem 283:19351–19358

    Article  CAS  PubMed  Google Scholar 

  24. Sarnovsky R, Rea J, Makowski M, Hertle R, Kelly C, Antignani A, Pastrana DV, Fitzgerald DJ (2009) Proteolytic cleavage of a C-terminal prosequence, leading to autoprocessing at the N Terminus, activates leucine aminopeptidase from Pseudomonas aeruginosa. J Biol Chem 284:10243–10253

    Article  CAS  PubMed  Google Scholar 

  25. Dong L, Cheng N, Wang MW, Zhang J, Shu C, Zhu DX (2005) The leucyl aminopeptidase from Helicobacter pylori is an allosteric enzyme. Microbiology 151:2017–2023

    Article  CAS  PubMed  Google Scholar 

  26. Myohanen H, Vaheri A (2004) Regulation and interactions in the activation of cell-associated plasminogen. Cell Mol Life Sci 61:2840–2858

    Article  CAS  PubMed  Google Scholar 

  27. Kinnby B, Booth NA, Svensater G (2008) Plasminogen binding by oral streptococci from dental plaque and inflammatory lesions. Microbiology 154:924–931

    Article  CAS  PubMed  Google Scholar 

  28. Hughes MJ, Moore JC, Lane JD, Wilson R, Pribul PK, Younes ZN, Dobson RJ, Everest P, Reason AJ, Redfern JM, Greer FM, Paxton T, Panico M, Morris HR, Feldman RG, Santangelo JD (2002) Identification of major outer surface proteins of Streptococcus agalactiae. Infect Immun 70:1254–1259

    Article  CAS  PubMed  Google Scholar 

  29. Jones M, Holt R (2007) Cloning and characterization of an α-enolase of the oral pathogen streptococcus mutans that binds human plasminogen. Biochem Biophys Res Commun 364:924–929

    Article  CAS  PubMed  Google Scholar 

  30. Crow VL, Davey GP, Pearce LE, Thomas TD (1983) Plasmid linkage of the D-tagatose 6-phosphate pathway in Streptococcus lactis: effect on lactose and galactose metabolism. J Bacteriol 153:76–83

    CAS  PubMed  Google Scholar 

  31. Loughman JA, Caparon MG (2006) A novel adaptation of aldolase regulates virulence in Streptococcus pyogenes. EMBO J 25:5414–5422

    Article  CAS  PubMed  Google Scholar 

  32. Kandror O, Sherman M, Moerschell R, Goldberg AL (1997) Trigger factor associates with GroEL in vivo and promotes its binding to certain polypeptides. J Biol Chem 272:1730–1734

    Article  CAS  PubMed  Google Scholar 

  33. Teter SA, Houry WA, Ang D, Tradler T, Rockabrand D, Fischer G, Blum P, Georgopoulos C, Hartl FU (1999) Polypeptide flux through bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains. Cell 97:755–765

    Article  CAS  PubMed  Google Scholar 

  34. Thies FL, Karch H, Hartung HP, Giegerich G (1999) Cloning and expression of the dnaK gene of Campylobacter jejuni and antigenicity of heat shock protein 70. Infect Immun 67:1194–1200

    CAS  PubMed  Google Scholar 

  35. Lyon WR, Gibson CM, Caparon MG (1998) A role for trigger factor and an rgg-like regulator in the transcription, secretion and processing of the cysteine proteinase of Streptococcus pyogenes. EMBO J 17:6263–6275

    Article  CAS  PubMed  Google Scholar 

  36. Lukomski S, Sreevatsan S, Amberg C, Reichardt W, Woischnik M, Podbielski A, Musser JM (1997) Inactivation of Streptococcus pyogenes extracellular cysteine protease significantly decreases mouse lethality of serotype M3 and M49 strains. J Clin Invest 99:2574–2580

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the “973” program (2006CB504400). We thank Liancheng Lei (Jilin University, China) for providing S. suis strain 606′, and Ailing Zhang and Jinfu Sun for assistance with the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinglong Wang.

Additional information

Yingchao Wang, Yuan Dang equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Dang, Y., Wang, X. et al. Comparative Proteomic Analyses of Streptococcus suis Serotype 2 Cell Wall-Associated Proteins. Curr Microbiol 62, 578–588 (2011). https://doi.org/10.1007/s00284-010-9747-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-010-9747-6

Keywords

Navigation