Skip to main content
Log in

Synergism of VAM and Rhizobium on Production and Metabolism of IAA in Roots and Root Nodules of Vigna Mungo

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Mature and healthy root nodules of Vigna mungo appeared to contain higher amount of indole-acetic acid (IAA) than non-nodulated roots. Dual effect of VAM fungus, Glomus fasciculatum and the nitrogen-fixing bacteria, Rhizobium sp. on the nodulation of roots of V. mungo was studied. It was recorded that the roots which were inoculated simultaneously with both the symbionts i.e., G. fasciculatum and Rhizobium exhibited greater amount of IAA production than the non-inoculated roots. A tryptophan pool present in the mature nodules and young leaves might serve as a precursor for IAA production in the roots and in the nodules. Activity of IAA-metabolizing enzymes, such as IAA oxidase, peroxidase, and polyphenol oxidase was investigated which indicates the active metabolism of IAA in roots and nodules. The Rhizobium symbiont isolated from fresh nodules of V. mungo produced significant amount of IAA under in vitro condition when tryptophan was added to the medium as precursor. Present study represents some beneficial effects of Rhizobium and G. fasciculatum on the production and metabolism of IAA in roots and nodules of V. mungo. The important physiological implication of the study on IAA production and its metabolism in Rhizobium–Legume–VAM tripartite symbiosis is certainly representing a new approach to satisfy the hormonal balance in the host plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Allen MF, Smith KW, Moore TS, Christensen M (1980) Phytohormone changes in Bouteloua gracilis infected by vesicular-arbuscular fungi. Can J Bot 58:371–374

    CAS  Google Scholar 

  2. Azcon-Aguilar, Barea JM, Hayman DS (1978) Effect of the interaction between different culture fractions of phospho – bacteria and rhizobium on mycorrhizal infection, growth and nodulation of Medicago sativa. Can J Microbiol 24:520–524

  3. Barea JM (1986) Importance of hormones and root exudates in mycorrhizal phenomena. In: Gianianazzi-Pearson, Gianianazzi S (eds) Physiological and genetical aspects of mycorrhizae. NARA, Paris, pp 177–187

    Google Scholar 

  4. Barea JM, Azcon-Aguilar C (1982) Production of plant growth regulating substances by the vesicular-arbuscular mycorrhizal fungus. Glomus mosseae. Appl Environ Microbiol 43:810–813

    CAS  PubMed  Google Scholar 

  5. Barea JM, Azcon-Aguilar C (1982) Interaction between mycorrhizal fungi and soil microorganisms. In: Les Mycorrhizes biologie et Utilization. National Institute of Agronomic research (INRA), France, pp 181–193

  6. Barea JM, Azcon-Aguilar C (1983) Mycorrhizae and their significance in nodulating nitrogen-fixing plants. Adv Agron 36:1–54

    Article  Google Scholar 

  7. Barker SJ, Tagu D (2000) The roles of auxins and cytokinins in mycorrhizal symbioses. J Plant Growth Regul 19:144–154

    CAS  PubMed  Google Scholar 

  8. Bowen GD, Skinner MF, Bevege DI (1974) Zinc uptake by mycorrhizal and uninfected roots of Pinus radiate and Auraucaria cunnighamii. Soil Biol Biochem 6:141–144

    Article  CAS  Google Scholar 

  9. Bray HG, Thorpe MV (1954) Analysis of phenolic compounds of interest in metabolism. In: Glick D (ed) Methods of biochemical analysis, vol 1. Inter Science Publications, New York, pp 17–52

  10. Cooper KM, Tinker PB (1978) Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. II. Uptake and transfer of Phosphorus, zinc and Sulphur. New Phytol 88:43–52

    Article  Google Scholar 

  11. Cooper KM, Tinker PB (1981) Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. IV. Effect of environmental variables on movement of phosphorus. New Phytol 88:327–339

    Article  CAS  Google Scholar 

  12. Crush JR (1974) Plant growth responses to vesicular-arbuscular mycorrhizae. VII. Growth and nodulation of some herbage legumes. New Phytol 73:743–752

    Article  CAS  Google Scholar 

  13. Daft MJ, El-Giahmi AA (1974) Effect of Endogon mycorrhiza on plant growth. VII. Influence of infection on the growth and nodulation in French bean (Phaseolus vulgaris). New Phytol 73:1139–1147

    Article  Google Scholar 

  14. Daft MJ, El-Giahmi AA (1976) Studies on nodulated and mycorrhizal peanuts. Ann Appl Biol 83:273–276

    Article  Google Scholar 

  15. Datta C, Basu PS (1998) Content of indole-acetic acid and its metabolism in root nodules of Melilotus alba. Folia Microbiol 43(4):427–430

    Article  CAS  Google Scholar 

  16. Datta C, Basu PS (1998) Production of indole-acetic acid in root nodules of culture by a Rhizobium species from root nodules of the fodder legume Melilotus alba DESR. Acta Biotechnol 18(1):53–62

    Article  CAS  Google Scholar 

  17. de Bary A (1879) Die Erscheinung der Symbiose. Cassel. LI, Tagebl. : Naturforsch. Versamm, p 121

  18. Ghosh AC, Basu PS (1998) Indole-acetic acid and its metabolism in the root nodules of a leguminous tree Dalbergia lanceolaria. Indian J Exp Biol 36:1058–1060

    CAS  Google Scholar 

  19. Ghosh S, Basu PS (2006) Production and metabolism of indole acetic acid in roots and root nodules of Phaseolus mungo. Microbiol Res 161:362–366

    Article  CAS  PubMed  Google Scholar 

  20. Gordon SA, Weber RP (1951) Colorimetric estimation of indole-acetic acid. Plant Physiol 26:192–195

    Article  CAS  PubMed  Google Scholar 

  21. Hassan SSM (1975) Spectrophotometric method for simultaneous determination of tryptophan and tyrosine. Anal Chem 47:1429–1432

    Article  CAS  PubMed  Google Scholar 

  22. Hayma DS (1986) Mycorrhizae of nitrogen-fixing legumes. MIRCEN J 2:121–145

    Article  Google Scholar 

  23. Hayman DS (1983) The physiology of vesicular-arbuscular-mycorrhizal symbiosis. Can J Botany 61:944–963

    Article  Google Scholar 

  24. Kar M, Mishra D (1976) Catalase, peroxidase and polyphenol oxidase activities during rice leaf senescence. Plant Physiol 57:315–319

    Article  CAS  PubMed  Google Scholar 

  25. Kefford NP, Brockwell J, Zwar JA (1960) The symbiotic synthesis of auxin by legumes and nodule bacteria and its role in nodule development. Aust J Biol Sci 13:456–467

    CAS  Google Scholar 

  26. Kokkinakis DM, Brooks JL (1979) Hydrogen peroxidase mediated oxidation of indole-3-acetic acid by tomato peroxidase and molecular oxygen. Plant Physiol 64:220–223

    Article  CAS  PubMed  Google Scholar 

  27. Liu A, Hamel C, Hamilton RI, Bl Ma, Smith DL (2000) Acquisition of Cu, Zn, Mn and fe by mycorrhizal maize (Zea mays L.) grown in soil at different different P and micronutrient levels. Mycorrhiza 9:331–336

    Article  CAS  Google Scholar 

  28. Lowry OH, Rosebrough NJ, Faar AL, Randall RJ (1951) Protein estimation with folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  29. Meyer JR, Linderman RG (1986) Responses of subterranean clover to dual inoculation with vesicular-arbuscular fungi and plant growth- promoting rhizobacteria, Pseudomonas strain. Soil Bio Biochem 18:185–190

    Article  CAS  Google Scholar 

  30. Neeraj, Verma A (1995) Cyamopsis, vesicular-arbuscular mycorrhiza and Rhizobium interaction study. In: Adholeya A, Singh S (eds) Proceedings of third national congress on mycorrhiza, TERI. New Delhi, pp 220–223

  31. Newman EI, Reddell P (1987) The distribution of mycorrhizas among families of vascular plants. New Phytol 106:745–751

    Article  Google Scholar 

  32. Nitsh JP (1955) Free auxin and free tryptophan in strawberry. Plant Physiol 30:33–39

    Article  Google Scholar 

  33. Nutman PS (1977) Study of frame works for symbiotic nitrogen fixation. In: Newton W, Postagate JR, Rodriguez Barrueco C (eds) Recent developments in nitrogen fixation. Academic Press, London, pp 443–447

    Google Scholar 

  34. Raverkar KP, Ganguli A (2005) Vesicular-arbuscular mycorrhizal associations in Glycin max (L.) Merrill. Improves symbiotic nitrogen fixation under water stress. In: Jalali BL, Chand H (eds) Current trends in mycorrhizal research. Proceedings of the National conference on mycorrhiza. Tata Energy Research Institute, New Delhi, pp 167–170

  35. Sinha BK, Basu PS (1981) Indole-3-acetic acid metabolism in root nodules of Pongamia pinnata (L.). Pierre. Biochem Physiol Pflanzen 176:218–227

    CAS  Google Scholar 

  36. Skerman VBD (1959) A guide to the identification of the Genera of bacteria with methods and digests of generic characteristics. The Williams and Wilkins Company, Baltimore, USA

  37. Smith SE (1980) Mycorrhiza of autotrophic higher plants. Biol Rev 55:475–510

    Article  CAS  Google Scholar 

  38. Stafford HA (1974) The metabolism of aromatic compounds. Annu Rev Plant Physiol 2:459–486

    Article  Google Scholar 

  39. Van Rhijn P, Fang Y, Galili S (1997) Expression of early nodulin genes in alfalfa mycorrhizae indicates that signal transduction pathways used in forming arbuscular mycorrhizae and Rhizobium induced nodules may be conserved. Proc Natl Acad Sci USA 91:5467–5472

    Article  Google Scholar 

  40. Vance CP (1978) Comparative aspects of root and nodule secondary metabolism. Phytochemistry 17:1889–1891

    Article  CAS  Google Scholar 

  41. Verma DPS, Hu CA, Zhand M (1992) Root nodule development : origin, function and regulation of nodulin genes. Pant Physiol 85:253–265

    Article  CAS  Google Scholar 

  42. Williams MNV, Singer ER (1990) Metabolism of tryptophan and tryptophan analogs by Rhizobium meliloti. Plant Physiol 92:1009–1013

    Article  CAS  PubMed  Google Scholar 

  43. Xie ZP, Staehelin C, Vierheilig H (1995) Rhizobial nodulation factors stimulate mycorrhizal colonization of nodulating and non nodulating soyabeans. Plant Physiol 108:1519–1525

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to UGC (SAP-II, Phase-III), Govt. of India for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sikha Dutta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakrabarti, J., Chatterjee, S., Ghosh, S. et al. Synergism of VAM and Rhizobium on Production and Metabolism of IAA in Roots and Root Nodules of Vigna Mungo . Curr Microbiol 61, 203–209 (2010). https://doi.org/10.1007/s00284-010-9597-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-010-9597-2

Keywords

Navigation