Skip to main content

Advertisement

Log in

Regulation of Sulfur Assimilation Pathways in Salmonella enterica Serovar Typhi Upon Up-Shift High Osmotic Treatment: The Role of UhpA Revealed Through Transcriptome Profiling

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Salmonella species were the most deeply and extensively studied prokaryotes, which were used as useful prokaryotic models for the genetic analysis. Salmonella enterica serovar Typhi (S. Typhi) is the etiological agent of typhoid fever, a major health problem in developing countries. UhpB/UhpA couple is a member of two-component regulatory system. It is considered that UhpB/UhpA controls the expression of the transport protein UhpT, which enables the cell to acquire phosphorylated sugars from its environment that can be used as carbon and/or energy sources. In our previous microarray-based study, uhpA and uhpB were up-regulated in S. Typhi at early stage of an osmotic up-shift stress. To explore the functions of UhpA under this stress, we constructed an uhpA deletion mutant of S. Typhi, and compared the global transcriptional difference between the uhpA mutant strain and the wild-type strain upon the up-shift high osmotic stress by using a genomic DNA microarray. Only 21 genes showed significant expression differences in the uhpA mutant strain compared to the wild-type strain. Strikingly, these 21 genes were all down-regulated (twofold). Moreover, most of these genes were associated with sulfur assimilation pathways. The results were validated by quantitative real-time PCR. In this study, we first found that uhpA involved in regulating sulfur assimilation pathways upon up-shift high osmotic treatment for 30 min, which will further promote our insights into the regulator network of S. Typhi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Beenken KE, Dunman PM, McAleese F et al (2004) Global gene expression in Staphylococcus aureus biofilms. J Bacteriol 186:4665–4684

    Article  CAS  PubMed  Google Scholar 

  2. Deng W, Liou SR, Plunkett G III et al (2002) Salmonella enterica subsp. enterica serovar Typhi Ty2 complete genome information: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=genomeprj&cmd=Retrieve&dopt=Overview&list_uids=371

  3. Everest P, Wain J, Roberts M et al (2001) The molecular mechanisms of severe typhoid fever. Trends Microbiol 9:316–320

    Article  CAS  PubMed  Google Scholar 

  4. House D, Bishop A, Parry C et al (2001) Typhoid fever: pathogenesis and disease. Curr Opin Infect Dis 14:573–578

    CAS  PubMed  Google Scholar 

  5. Huang XX, Phung LV, Dejsirilert SR et al (2004) Cloning and characterization of the gene encoding the z66 antigen of Salmonella enterica serovar Typhi. FEMS Microbiol Lett 234:239–246

    Article  CAS  PubMed  Google Scholar 

  6. Huang XX, Xu HX, Xu SG et al (2007) Genomic oligo microarray analysis of global transcriptional expression by Salmonella enterica serovar Typhi during hyperosmotic stress. Int J Mol Sci 8:116–135

    Article  CAS  Google Scholar 

  7. Island MD, Kadner RJ (1993) Interplay between the membrane-associated UhpB and UhpC regulatory proteins. J Bacterial 175:5028–5034

    CAS  Google Scholar 

  8. Island MD, Wei BY, Kadner RJ (1992) Structure and function of the uhp genes for the sugar phosphate transport system in Escherichia coli and Salmonella typhimurium. J Bacterial 174:2754–2762

    CAS  Google Scholar 

  9. Iwanicka-Nowicka R, Hryniewicz MM (1995) A new gene, cbl, encoding a member of the LysR family of transcriptional regulators belongs to Escherichia coli cys regulon. Gene 166:11–17

    Article  CAS  PubMed  Google Scholar 

  10. Jones BD, Falkow S (1996) Salmonellosis: host immune responses and bacterial virulence determinants. Annu Rev Immunol 14:533–561

    Article  CAS  PubMed  Google Scholar 

  11. Khan AQ, Zhao L, Hirose K et al (1998) Salmonella typhi rpoS mutant is less cytotoxic than the parent strain but survives inside resting THP-1 macrophages. FEMS Microbiol Lett 161:201–208

    Article  CAS  PubMed  Google Scholar 

  12. Kredich NM (1996) Biosynthesis of cysteine. In: Neidhardt FC, Curtiss R, Ingraham JL et al (eds) Escherichia coli and Salmonella: cellular and molecular biology. ASM Press, Washington, DC, pp 514–527

    Google Scholar 

  13. Luo L, Salunga RC, Guo H et al (1999) Gene expression profiles of laser-captured adjacent neuronal subtypes. Nat Med 5:117–122

    Article  CAS  PubMed  Google Scholar 

  14. Parkinson JS, Kofoid EC (1992) Communication modules in bacterial signaling proteins. Annu Rev Genet 26:71–112

    Article  CAS  PubMed  Google Scholar 

  15. Parry CM, Hien TT, Dougan G et al (2002) Review article: typhoid fever. N Engl J Med 347:1770–1782

    Article  CAS  PubMed  Google Scholar 

  16. Rychlik I, Barrow PA (2005) Salmonella stress management and its relevance to behavior during intestinal colonization and infection. FEMS Microbiol Rev 29:1021–1040

    Article  CAS  PubMed  Google Scholar 

  17. Sebastien P, Steffen P, Charles M et al (2006) Transcriptome of Salmonella enterica serovar Typhi within macrophages revealed through the selective capture of transcribed sequence. PNAS 103:1906–1911

    Article  CAS  Google Scholar 

  18. Sheng XM, Huang XX, Mao LX et al (2009) Preparation of Salmonella enterica Serovar Typhi genomic DNA microarrays for gene expression profiling analysis. Prog Biochem Biophys 36:206–212

    Article  CAS  Google Scholar 

  19. Stock AM, Robinson VL, Goudreau PN (2000) Two-component signal transduction. Annu Rev Biochem 69:183–215

    Article  CAS  PubMed  Google Scholar 

  20. Stock JB, Ninfa AJ, Stock AM (1989) Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev 53:450–490

    CAS  PubMed  Google Scholar 

  21. Talat AM, Hunter P, Johnston SA (2000) Genome-directed primers for selective labeling of bacterial transcripts for DNA microarray analysis. Nat Biotechnol 18:679–682

    Article  CAS  Google Scholar 

  22. Tusher V, Tibshirani R, Chu C (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 98:5116–5121

    Article  CAS  PubMed  Google Scholar 

  23. Van der Ploeg JR, Iwanicka-Nowicka R, Bykowski T et al (1999) The Escherichia coli ssuEADCB gene cluster is required for the utilization of sulfur from aliphatic sulfonates and is regulated by the transcriptional activator Cbl. J Biol Chem 41:29358–29365

    Article  Google Scholar 

  24. Van der Ploeg JR, Iwanicka-Nowicka R, Kertesz MA et al (1997) Involvement of CysB and Cbl regulatory proteins in expression of the tauABCD operon and other sulfate starvation-inducible genes in Escherichia coli. J Bacteriol 179:7671–7678

    PubMed  Google Scholar 

  25. Verhamme DT, Postma PW, Crielaard W et al (2002) Cooperativity in signal transfer through the Uhp system of Escherichia coli. J Bacteriol 184:4205–4210

    Article  CAS  PubMed  Google Scholar 

  26. Verhamme DT, Arents JC, Postma PW et al (2001) Glucose-6-phosphate-dependent phosphoryl flow through the Uhp two-component regulatory system. Microbiology 147:3345–3352

    CAS  PubMed  Google Scholar 

  27. West AH, Stock AM (2001) Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem Sci 26:369–376

    Article  CAS  PubMed  Google Scholar 

  28. Western LA, Kadner RJ (1988) Role of uhp genes in expression of the Escherichia coli sugar-phosphate transport system. J Bacterial 170:3375–3383

    Google Scholar 

  29. Wright JS, Kadner RJ (2001) The phosphoryl transfer domain of UhpB interacts with the response regulator UhpA. J Bacterial 183:3149–3159

    Article  CAS  Google Scholar 

  30. Xu SG, Zhang HF, Sheng XM et al (2008) Transcriptional expression of fljB:z66, a flagellin gene located on a novel linear plasmid of salmonella enterica serovar Typhi under environmental stresses. New Microbiol 31:241–247

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by grants from National Key Technology R&D Program of China (No. 2006BAK02A15) and Natural Science Foundation for colleges and universities in Jiangsu Province (No. 1191270005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinxiang Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 61 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheng, X., Huang, X., Li, J. et al. Regulation of Sulfur Assimilation Pathways in Salmonella enterica Serovar Typhi Upon Up-Shift High Osmotic Treatment: The Role of UhpA Revealed Through Transcriptome Profiling. Curr Microbiol 59, 628–635 (2009). https://doi.org/10.1007/s00284-009-9487-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-009-9487-7

Keywords

Navigation