Skip to main content
Log in

Fungal Transcript Pattern During the Preinfection Stage (12 h) of Ectomycorrhiza Formed Between Pisolithus tinctorius and Castanea sativa Roots, Identified Using cDNA Microarrays

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Transcriptional changes in Pisolithus tinctorius leading to ectomycorrhizal formation in P. tinctoriusCastanea sativa were investigated using a 12-h fungal interaction in vitro system. Using a 3107-cDNA clone microarray, 34 unique expressed sequence tags (ESTs) were found to be differentially expressed. These ESTs represent 14 known genes, 5 upregulated and 9 downregulated, and 20 orphan sequences. Some transcripts of upregulated genes (with unknown function) were previously identified in other mycorrhizal Pisolithus spp. associations. ESTs for S-adenosyl-l-homocysteine hydrolase and several orphan sequences were identified in our system. The identified transcript of downregulated genes involved hydrophobins, 5S, 18S, and 28S ribosomal RNA genes, large subunits of ribosomal RNA (mitochondrial gene), and two types of heat shock proteins. This study demonstrates the high complexity of molecular events involved in the preinfection steps and suggests the utilization of different fungal gene repertories before ectomycorrhizal formation. These data constitute a first contribution for the molecular understanding of early signaling events between P. tinctorius and C. sativa roots during ectomycorrhizal formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ausubel FM, Brent R, Kingston RE et al (eds) (1993) Current protocols in molecular biology, 4th edn. Wiley, New York

    Google Scholar 

  2. Baptista P, Martins A, Pais MS, Tavares RM, Lino-Neto T (2007) Involvement of reactive oxygen species during early stages of ectomycorrhiza establishment between Castanea sativa and Pisolithus tinctorius. Mycorrhiza 17:185–193

    Article  PubMed  CAS  Google Scholar 

  3. Breitling R, Armengaud P, Amtmann A, Herzyk P (2004) Rank products: a simply, yet powerful, new method to detect differentially regulated genes in replicated microarray experiment. Fed Eur Biochem Soc Lett 573:83–92

    CAS  Google Scholar 

  4. Duplessis S, Courty P, Tagu D, Martim F (2005) Transcript patterns associated with ectomycorrhiza development in Eucalyptus globulus and Pisolithus microcarpus. New Phytol 165:599–611

    Article  PubMed  CAS  Google Scholar 

  5. Gupta RS (1995) Phylogenetic analysis of 90kD heat shock family of protein sequences and an examination of the relationship among animals, plants and fungi species. Mol Biol Evol 12(6):1063–1073

    PubMed  CAS  Google Scholar 

  6. Harley J, Smith SE (1983) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  7. Hegde P, Qi R, Albernathy K et al (2000) A concise guide to cDNA microarray analysis. Biotechniques 29:548–562

    PubMed  CAS  Google Scholar 

  8. Hilbert JL, Costa G, Martin F (1991) Ectomycorrhizin synthesis and polypeptide changes during the early stage of eucalypt mycorrhiza development. Plant Physiol 97:977–984

    Article  PubMed  CAS  Google Scholar 

  9. Johansson T, Le Quéré A, Ahren D et al (2004) Transcriptional responses of Paxillus involutus and Betula pendula during formation of ectomycorrhizal root tissue. Mol Plant–Microbe Interact 17(2):202–205

    Article  PubMed  Google Scholar 

  10. Kawalleck P, Plesh G, Hahlbrock K, Somssich IE (1992) Induction by fungal elicitor of S-adenosyl-l-methionine synthetase and S-adenosyl-l-homocysteine hydrolase mRNAs in cultured cell and leaves of Petroselinum crispum. Proc Natl Acad Sci USA 89:4713–4717

    Article  PubMed  CAS  Google Scholar 

  11. Laurent P, Voiblet C, Tagu D et al (1999) A novel class of ectomycorrhiza-regulated cell wall polypeptides in Pisolithus tictorius. Mol Plant–Microbe Interact 12(10):862–871

    Article  PubMed  CAS  Google Scholar 

  12. Le Quéré A, Wright DP, Söderström B, Tunlid A, Johansson T (2005) Global patterns of gene regulation associated with the development of ectomycorrhiza between Birch (Betula pendula Roth.) and Paxillus involutus. Mol Plant–Microbe Interact 18(7):659–673

    Article  PubMed  CAS  Google Scholar 

  13. Martin F, Duplessis S, Ditengou F, Lagrange H, Voiblet C, Frédéric L (2001) Developmental cross talking in the ectomycorrhizal symbiosis: signal and communication genes. New Phytol 151:145–154

    Article  CAS  Google Scholar 

  14. Martins A, Barroso J, Pais MS (1996) Effect of ectomycorrhizal fungi on survival and growth of micropropagated plants and seedlings of Castanea sativa Mill. Mycorrhiza 6:265–270

    Article  Google Scholar 

  15. Marx DH (1969) The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology 59:153–163

    Google Scholar 

  16. Menotta M, Amicucci A, Sisti D, Gioacchini AM, Stocchi V (2004) Differential gene expression during pre-symbiotic interaction between Tuber borchii Vittad. and Tilia Americana L. Curr Genet 46:158–165

    Article  PubMed  CAS  Google Scholar 

  17. Nehls U, Mikolajewski S, Ecke M, Hampp R (1999) Identification and expression analysis of two fungal cDNA regulated by ectomycorrhiza and fruit body formation. New Phytol 144:195–202

    Article  CAS  Google Scholar 

  18. Polidori E, Agostini D, Zeppa S et al (2002) Identification of differentially expressed cDNA clones in Tilia platiphyllosTuber borchii ectomycorrhizae using a differential screening approach. Mol Genet Genomics 266:858–864

    Article  PubMed  CAS  Google Scholar 

  19. Rerie WG, Whitecross MP, Higgins TJ (1991) Developmental and environmental regulation of pea legumin genes in transgenic tobacco. Mol Gen Genet 225:148–157

    Article  PubMed  CAS  Google Scholar 

  20. Stecher H, Felfer U, Faber K (1997) Large-scale production of Mandelate racemase by Pseudomonas putida ATCC 12633: optimization of enzyme induction and development of a stable crude enzyme preparation. J Biotechnol 56:33–40

    Article  CAS  Google Scholar 

  21. Tagu D, Nasse B, Martin F (1996) Cloning and characterization of hydrophobins-encoding cDNAs from the ectomycorrhizal Basidiomycete Pisolithus tinctorius. Gene 168:93–97

    Article  PubMed  CAS  Google Scholar 

  22. Tagu D, De Bellis R, Balestrini R et al (2001) Immunolocalization of hydrophobin HYDPt-1 from the ectomycorrhizal basidiomycete Pisolithus tinctorius during colonization of Eucalyptus globulus roots. New Phytol 149:127–135

    Article  CAS  Google Scholar 

  23. Tagu D, Lapeyrie F, Martin F (2002) The ectomycorrhizal symbiosis: genetics and development. Plant Soil 244:97–105

    Article  CAS  Google Scholar 

  24. Voiblet C, Duplessis S, Encelot L, Martin F (2001) Identification of symbiosis-regulated genes in Eucalyptus globulusPisolitus tinctorius ectomycorrhiza by differential hybridization of arrayed cDNAs. Plant J 25(2):181–191

    Article  PubMed  CAS  Google Scholar 

  25. Zaretsky M, Sitrit Y, Mills D, Roth-Bejerano N, Kagan-Zur V (2006) Expression of fungal genes at preinfection and mycorrhiza establishment between Terfezia boudieri isolates and Cistus incanus hairy root clones. New Phytol 171:837–846

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior/Ministério da Educação–Brazil) through a Ph.D. scholarship and grant conceded to the first author. L. C. Maia acknowledges CNPq (Conselho Nacional de desenvolvimento Científico e Tecnológico, Brazil) support. Dra. Lisete Souza acknowledges FCT (Fundação para a Ciência e Tecnologia, Portugal) support (projects FCT/POCI 2010 and PTDC/MAT/64353/2006). The authors thank Dr. Gregory Mueller (Field Museum of Natural History, Chicago, USA) and Dr. Rita C. C. Maia (CPqAM/FIOCRUZ) for their help in the manuscript review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartolomeu Acioli-Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acioli-Santos, B., Sebastiana, M., Pessoa, F. et al. Fungal Transcript Pattern During the Preinfection Stage (12 h) of Ectomycorrhiza Formed Between Pisolithus tinctorius and Castanea sativa Roots, Identified Using cDNA Microarrays. Curr Microbiol 57, 620–625 (2008). https://doi.org/10.1007/s00284-008-9253-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-008-9253-2

Keywords

Navigation