Skip to main content
Log in

Tetrahedra with Congruent Facet Pairs

  • Article
  • Published:
The Mathematical Intelligencer Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Notes

  1. Piero della Francesca (1415–1492) was an Italian painter and geometer of the early Renaissance.

References

  1. A. Akopyan and I. Izmestiev. The Regge symmetry, confocal conics, and the Schläfli formula. Bull. London Math. Soc. 51 (2019), 765–775.

  2. M. Artin. Algebra, 2nd ed. Prentice-Hall, 2010.

  3. T. Bonnesen and W. Fenchel. Theory of Convex Bodies. BCS Associates, 1987.

  4. H. Coxeter. Regular Polytopes. Dover, 1973.

  5. H. Coxeter and S. Greitzer. Geometry Revisited. MAA, 1967.

  6. D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms, 2nd ed. Springer, 1996.

  7. C. D’Andrea and M. Sombra. The Cayley–Menger determinant is irreducible for \(n \ge 3\). Sib. Math. J. 46 (2005), 71–76.

  8. P. Fowler and A. Rasset. Is there a “most chiral tetrahedron”? Chem. Eur. J. 10 (2004), 6575–6580.

  9. P. Fowler and A. Rasset. A classification scheme for chiral tetrahedra. C. R. Chimie 9 (2006), 1203–1208.

  10. R. Honsberger. Mathematical Gems II. MAA, 1976.

  11. J.  Horváth. A property of tetrahedra with equal faces in spaces of constant curvature (in Hungarian, German summary). Mat. Lapok 20 (1969), 257–263.

  12. D. Klain. An intuitive derivation of Heron’s formula. Amer. Math. Monthly 111:8 (2004), 709–712.

  13. J. Leech. Some properties of the isosceles tetrahedron. Math. Gaz. 34:310 (1950), 269–271.

  14. H. Martini. Regular simplices in spaces of constant curvature. Amer. Math. Monthly 100:2 (1993), 169–171.

  15. P. McMullen. Simplices with equiareal faces. Discrete Comput. Geom. 24 (2000), 397–411.

  16. M. Peterson. The geometry of Piero della Francesca. Math. Intell. 19:3 (1997), 33–40.

  17. R. Schneider. Convex Bodies: The Brunn–Minkowski Theory, 2nd ed. Cambridge University Press, 2014.

  18. D. Sommerville. An Introduction to the Geometry of \(n\) Dimensions. Dover, 1958.

  19. H. Steinhaus. One Hundred Problems in Elementary Mathematics. Dover, 1979.

  20. K. Wirth and A. Dreiding. Edge lengths determining tetrahedrons. Elem. Math. 64 (2009), 160–170.

  21. K. Wirth and A. Dreiding. Tetrahedron classes based on edge lengths. Elem. Math. 68 (2013), 56–64.

  22. K. Wirth and A. Dreiding, Relations between edge lengths, dihedral, and solid angles in tetrahedra. J. Math. Chem. 52 (2014), 1624–1638.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A. Klain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klain, D.A. Tetrahedra with Congruent Facet Pairs. Math Intelligencer 45, 251–255 (2023). https://doi.org/10.1007/s00283-022-10228-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00283-022-10228-4

Navigation