Skip to main content

Advertisement

Log in

Regulating against the dysregulation: new treatment options in autoinflammation

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

In autoinflammatory disorders, dysregulation of the innate immune response leads to an excessive cytokine release. The disease course is often characterized by high morbidity and mortality, treatment is mostly difficult and therapeutic options are limited. In most cases, life-long control of ongoing inflammation is necessary in order to improve clinical symptoms and prevent development of damage. Steroids are helpful in many conditions, but the development of serious side effects often limits their long-term use. Other immunosuppressive, steroid-sparing medications are less effective than in the treatment of autoimmune diseases or do not show any effect. So far, anti-IL1α and/or β-blocking agents as well as an IL-6 receptor-blocking monoclonal antibody and, to a lesser extent, TNF-α blocking agents were applied in autoinflammatory disorders and significantly improved the outcome. Although these progresses were made in the last years, there are still numerous challenges in order to improve drug therapy in autoinflammation. This review summarizes the current state of new drug development and discusses advantages and disadvantages of possible targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ADCC:

Antibody-dependent cellular cytotoxicity

ASC:

Apoptosis-associated speck-like protein containing a CARD

ATP:

Adenosine triphosphate

BHB:

β-hydroxybutyrate

CANDLE:

Chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature

CAPS:

Cryopyrin-associated periodic syndrome

CDC:

Complement-dependent cytotoxicity

DAMP:

Damage-associated molecular pattern

DMSO:

Dimethylsulfoxide

DRD1:

Dopamine receptor 1

DUB:

Deubiquitinase enzymes

FA:

Fatty acid

FCAS:

Familial cold autoinflammatory syndrome

FMF:

Familial Mediterranean fever

HIDS:

Hyper-IgD and periodic fever syndrome

HFD:

High-fat diet

IP-10:

Interferon gamma inducible protein 10

JAK:

Janus-kinase

LFD:

Low fat diet

LPS:

Lipopolysaccharide

NAC:

N-acetyl cysteine

NRTI:

Nucleoside reverse transcriptase inhibitor

NLRP3:

NLR family, pyrin domain containing 3

PAPA:

Pyogenic arthritis, pyoderma gangrenosum and acne syndrome

PAMP:

Pathogen-associated molecular pattern

PG:

Prostaglandins

ROS:

Reactive oxygen species

sJIA:

Systemic juvenile idiopathic arthritis

SAVI:

STING-associated vasculopathy with onset in infancy

STAT-1:

Signal transducers and activators of transcription

TRAPS:

Tumour necrosis factor receptor-associated periodic fever syndrome

TXN:

Thioredoxin

TXNIP:

Thiodoxin-interacting protein

References

  1. Goldbach-Mansky R et al (2006) Neonatal-onset multisystem inflammatory disease responsive to interleukin-1beta inhibition. N Engl J Med 355:581–592. doi:10.1056/NEJMoa055137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Hoffman HM et al (2008) Efficacy and safety of rilonacept (interleukin-1 Trap) in patients with cryopyrin-associated periodic syndromes: results from two sequential placebo-controlled studies. Arthritis Rheum 58:2443–2452. doi:10.1002/art.23687

    Article  CAS  PubMed  Google Scholar 

  3. Lachmann HJ et al (2009) Use of canakinumab in the cryopyrin-associated periodic syndrome. N Engl J Med 360:2416–2425. doi:10.1056/NEJMoa0810787

    Article  CAS  PubMed  Google Scholar 

  4. Ruperto N et al (2012) Two randomized trials of canakinumab in systemic juvenile idiopathic arthritis. N Engl J Med 367:2396–2406. doi:10.1056/NEJMoa1205099

    Article  CAS  PubMed  Google Scholar 

  5. De Benedetti F et al (2012) Randomized trial of tocilizumab in systemic juvenile idiopathic arthritis. N Engl J Med 367:2385–2395. doi:10.1056/NEJMoa1112802

    Article  PubMed  Google Scholar 

  6. Krause K et al (2012) Efficacy and safety of the interleukin-1 antagonist rilonacept in Schnitzler syndrome: an open-label study. Allergy 67:943–950. doi:10.1111/j.1398-9995.2012.02843.x

    Article  CAS  PubMed  Google Scholar 

  7. Demidowich AP et al (2012) Brief report: genotype, phenotype, and clinical course in five patients with PAPA syndrome (pyogenic sterile arthritis, pyoderma gangrenosum, and acne). Arthritis Rheum 64:2022–2027. doi:10.1002/art.34332

    Article  PubMed Central  PubMed  Google Scholar 

  8. Meinzer U et al (2011) Interleukin-1 targeting drugs in familial Mediterranean fever: a case series and a review of the literature. Semin Arthritis Rheum 41:265–271. doi:10.1016/j.semarthrit.2010.11.003

    Article  CAS  PubMed  Google Scholar 

  9. Bodar EJ et al (2011) On-demand anakinra treatment is effective in mevalonate kinase deficiency. Ann Rheum Dis 70:2155–2158. doi:10.1136/ard.2011.149922

    Article  CAS  PubMed  Google Scholar 

  10. Ter Haar N et al (2013) Treatment of autoinflammatory diseases: results from the Eurofever Registry and a literature review. Ann Rheum Dis 72:678–685. doi:10.1136/annrheumdis-2011-201268

    Article  PubMed  Google Scholar 

  11. Chan AC, Carter PJ (2010) Therapeutic antibodies for autoimmunity and inflammation. Nat Rev Immunol 10:301–316. doi:10.1038/nri2761

    Article  CAS  PubMed  Google Scholar 

  12. Roopenian DC, Akilesh S (2007) FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol 7:715–725. doi:10.1038/nri2155

    Article  CAS  PubMed  Google Scholar 

  13. Ghetie V et al (1997) Increasing the serum persistence of an IgG fragment by random mutagenesis. Nat Biotechnol 15:637–640. doi:10.1038/nbt0797-637

    Article  CAS  PubMed  Google Scholar 

  14. Hinton PR et al (2004) Engineered human IgG antibodies with longer serum half-lives in primates. J Biol Chem 279:6213–6216. doi:10.1074/jbc.C300470200

    Article  CAS  PubMed  Google Scholar 

  15. Bargou R et al (2008) Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science 321:974–977. doi:10.1126/science.1158545

    Article  CAS  PubMed  Google Scholar 

  16. Wu C et al (2009) Molecular construction and optimization of anti-human IL-1alpha/beta dual variable domain immunoglobulin (DVD-Ig) molecules. mAbs 1:339–347

    Article  PubMed Central  PubMed  Google Scholar 

  17. Mabry R et al (2010) Engineering of stable bispecific antibodies targeting IL-17A and IL-23. Protein Eng Des Sel PEDS 23:115–127. doi:10.1093/protein/gzp073

    Article  CAS  PubMed  Google Scholar 

  18. Weinblatt M et al (2007) Selective costimulation modulation using abatacept in patients with active rheumatoid arthritis while receiving etanercept: a randomised clinical trial. Ann Rheum Dis 66:228–234. doi:10.1136/ard.2006.055111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Aksentijevich I et al (2009) An autoinflammatory disease with deficiency of the interleukin-1-receptor antagonist. N Engl J Med 360:2426–2437. doi:10.1056/NEJMoa0807865

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Marrakchi S et al (2011) Interleukin-36-receptor antagonist deficiency and generalized pustular psoriasis. N Engl J Med 365:620–628. doi:10.1056/NEJMoa1013068

    Article  CAS  PubMed  Google Scholar 

  21. Cowen EW, Goldbach-Mansky R (2012) DIRA, DITRA, and new insights into pathways of skin inflammation: what’s in a name? Arch Dermatol 148:381–384. doi:10.1001/archdermatol.2011.3014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Stack JH et al (2005) IL-converting enzyme/caspase-1 inhibitor VX-765 blocks the hypersensitive response to an inflammatory stimulus in monocytes from familial cold autoinflammatory syndrome patients. J Immunol 175:2630–2634

    Article  CAS  PubMed  Google Scholar 

  23. Wannamaker W et al (2007) (S)-1-((S)-2-{[1-(4-amino-3-chloro-phenyl)-methanoyl]-amino}-3,3-dimethyl-butanoy l)-pyrrolidine-2-carboxylic acid ((2R,3S)-2-ethoxy-5-oxo-tetrahydro-furan-3-yl)-amide (VX-765), an orally available selective interleukin (IL)-converting enzyme/caspase-1 inhibitor, exhibits potent anti-inflammatory activities by inhibiting the release of IL-1beta and IL-18. J Pharmacol Exp Ther 321:509–516. doi:10.1124/jpet.106.111344

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Y et al (2015) NLRP3 inflammasome mediates chronic mild stress-induced depression in mice via neuroinflammation. Int J Neuropsychopharmacol Off Sci J Coll Int Neuropsychopharmacologicum. doi:10.1093/ijnp/pyv006

    Google Scholar 

  25. Surh YJ et al (2011) 15-Deoxy-Delta(1)(2), (1)(4)-prostaglandin J(2), an electrophilic lipid mediator of anti-inflammatory and pro-resolving signaling. Biochem Pharmacol 82:1335–1351. doi:10.1016/j.bcp.2011.07.100

    Article  CAS  PubMed  Google Scholar 

  26. Maier NK, Leppla SH, Moayeri M (2015) The cyclopentenone prostaglandin 15d-PGJ2 inhibits the NLRP1 and NLRP3 inflammasomes. J Immunol 194:2776–2785. doi:10.4049/jimmunol.1401611

    Article  CAS  PubMed  Google Scholar 

  27. Coll RC, Robertson A, Butler M, Cooper M, O'Neill LA (2011) The cytokine release inhibitory drug CRID3 targets ASC oligomerisation in the NLRP3 and AIM2 inflammasomes. PLoS One 6:e29539. doi:10.1371/journal.pone.0029539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Coll RC et al (2015) A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med 21:248–255. doi:10.1038/nm.3806

    CAS  PubMed  Google Scholar 

  29. Brydges SD et al (2009) Inflammasome-mediated disease animal models reveal roles for innate but not adaptive immunity. Immunity 30:875–887. doi:10.1016/j.immuni.2009.05.005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Labbe K, McIntire CR, Doiron K, Leblanc PM, Saleh M (2011) Cellular inhibitors of apoptosis proteins cIAP1 and cIAP2 are required for efficient caspase-1 activation by the inflammasome. Immunity 35:897–907. doi:10.1016/j.immuni.2011.10.016

    Article  CAS  PubMed  Google Scholar 

  31. Lopez-Castejon G et al (2013) Deubiquitinases regulate the activity of caspase-1 and interleukin-1beta secretion via assembly of the inflammasome. J Biol Chem 288:2721–2733. doi:10.1074/jbc.M112.422238

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Py BF, Kim MS, Vakifahmetoglu-Norberg H, Yuan J (2013) Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity. Mol Cell 49:331–338. doi:10.1016/j.molcel.2012.11.009

    Article  CAS  PubMed  Google Scholar 

  33. Luheshi NM, Giles JA, Lopez-Castejon G, Brough D (2012) Sphingosine regulates the NLRP3-inflammasome and IL-1beta release from macrophages. Eur J Immunol 42:716–725. doi:10.1002/eji.201142079

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Dostert C et al (2008) Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320:674–677. doi:10.1126/science.1156995

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Pelegrin P, Surprenant A (2009) Dynamics of macrophage polarization reveal new mechanism to inhibit IL-1beta release through pyrophosphates. EMBO J 28:2114–2127. doi:10.1038/emboj.2009.163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Misawa T et al (2013) Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat Immunol 14:454–460. doi:10.1038/ni.2550

    Article  CAS  PubMed  Google Scholar 

  37. Koh GC et al (2011) Glyburide is anti-inflammatory and associated with reduced mortality in melioidosis. Clin Infect Dis Off Publ Infect Dis Soc Am 52:717–725. doi:10.1093/cid/ciq192

    Article  CAS  Google Scholar 

  38. Lamkanfi M et al (2009) Glyburide inhibits the Cryopyrin/Nalp3 inflammasome. J Cell Biol 187:61–70. doi:10.1083/jcb.200903124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Pareek A, Suthar M, Rathore GS, Bansal V (2011) Feverfew (Tanacetum parthenium L.): a systematic review. Pharmacogn Rev 5:103–110. doi:10.4103/0973-7847.79105

    Article  PubMed Central  PubMed  Google Scholar 

  40. Juliana C et al (2010) Anti-inflammatory compounds parthenolide and Bay 11-7082 are direct inhibitors of the inflammasome. J Biol Chem 285:9792–9802. doi:10.1074/jbc.M109.082305

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Shaikenov TE et al (2001) Arglabin-DMA, a plant derived sesquiterpene, inhibits farnesyltransferase. Oncol Rep 8:173–179

    CAS  PubMed  Google Scholar 

  42. Kirii H et al (2003) Lack of interleukin-1beta decreases the severity of atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 23:656–660. doi:10.1161/01.ATV.0000064374.15232.C3

    Article  CAS  PubMed  Google Scholar 

  43. Abderrazak A et al (2015) Anti-inflammatory and antiatherogenic effects of the NLRP3 inflammasome inhibitor arglabin in ApoE2.Ki mice fed a high-fat diet. Circulation 131:1061–1070. doi:10.1161/CIRCULATIONAHA.114.013730

    Article  CAS  PubMed  Google Scholar 

  44. Santos NC, Figueira-Coelho J, Martins-Silva J, Saldanha C (2003) Multidisciplinary utilization of dimethyl sulfoxide: pharmacological, cellular, and molecular aspects. Biochem Pharmacol 65:1035–1041

    Article  CAS  PubMed  Google Scholar 

  45. Kloesch B, Liszt M, Broell J, Steiner G (2011) Dimethyl sulphoxide and dimethyl sulphone are potent inhibitors of IL-6 and IL-8 expression in the human chondrocyte cell line C-28/I2. Life Sci 89:473–478. doi:10.1016/j.lfs.2011.07.015

    Article  CAS  PubMed  Google Scholar 

  46. Ahn H, Kim J, Jeung EB, Lee GS (2014) Dimethyl sulfoxide inhibits NLRP3 inflammasome activation. Immunobiology 219:315–322. doi:10.1016/j.imbio.2013.11.003

    Article  CAS  PubMed  Google Scholar 

  47. Youm YH et al (2015) The ketone metabolite beta-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat Med 21:263–269. doi:10.1038/nm.3804

    CAS  PubMed  Google Scholar 

  48. Fowler BJ et al (2014) Nucleoside reverse transcriptase inhibitors possess intrinsic anti-inflammatory activity. Science 346:1000–1003. doi:10.1126/science.1261754

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Sarkar C, Basu B, Chakroborty D, Dasgupta PS, Basu S (2010) The immunoregulatory role of dopamine: an update. Brain Behav Immun 24:525–528. doi:10.1016/j.bbi.2009.10.015

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Yan Y et al (2015) Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell 160:62–73. doi:10.1016/j.cell.2014.11.047

    Article  CAS  PubMed  Google Scholar 

  51. Arulkumaran N, Unwin RJ, Tam FW (2011) A potential therapeutic role for P2X7 receptor (P2X7R) antagonists in the treatment of inflammatory diseases. Expert Opin Investig Drugs 20:897–915. doi:10.1517/13543784.2011.578068

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Marques-da-Silva C, Chaves MM, Castro NG, Coutinho-Silva R, Guimaraes MZ (2011) Colchicine inhibits cationic dye uptake induced by ATP in P2X2 and P2X7 receptor-expressing cells: implications for its therapeutic action. Br J Pharmacol 163:912–926. doi:10.1111/j.1476-5381.2011.01254.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Liu Y et al (2012) Mutations in proteasome subunit beta type 8 cause chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature with evidence of genetic and phenotypic heterogeneity. Arthritis Rheum 64:895–907. doi:10.1002/art.33368

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Riese RJ, Krishnaswami S, Kremer J (2010) Inhibition of JAK kinases in patients with rheumatoid arthritis: scientific rationale and clinical outcomes. Best Pract Res Clin Rheumatol 24:513–526. doi:10.1016/j.berh.2010.02.003

    Article  CAS  PubMed  Google Scholar 

  55. Schwabe AD, Peters RS (1974) Familial Mediterranean fever in Armenians. Analysis of 100 cases. Medicine 53:453–462

    Article  CAS  PubMed  Google Scholar 

  56. Ozen S et al (2009) Disease severity in children and adolescents with familial Mediterranean fever: a comparative study to explore environmental effects on a monogenic disease. Ann Rheum Dis 68:246–248. doi:10.1136/ard.2008.092031

    Article  CAS  PubMed  Google Scholar 

  57. Ozen S et al (2014) Results from a multicentre international registry of familial Mediterranean fever: impact of environment on the expression of a monogenic disease in children. Ann Rheum Dis 73:662–667. doi:10.1136/annrheumdis-2012-202708

    Article  PubMed  Google Scholar 

  58. Touitou I et al (2007) Country as the primary risk factor for renal amyloidosis in familial Mediterranean fever. Arthritis Rheum 56:1706–1712. doi:10.1002/art.22507

    Article  PubMed  Google Scholar 

  59. Lukens JR et al (2014) Dietary modulation of the microbiome affects autoinflammatory disease. Nature 516:246–249. doi:10.1038/nature13788

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Zhang MJ, Spite M (2012) Resolvins: anti-inflammatory and proresolving mediators derived from omega-3 polyunsaturated fatty acids. Annu Rev Nutr 32:203–227. doi:10.1146/annurev-nutr-071811-150726

    Article  CAS  PubMed  Google Scholar 

  61. Yan Y et al (2013) Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation. Immunity 38:1154–1163. doi:10.1016/j.immuni.2013.05.015

    Article  CAS  PubMed  Google Scholar 

  62. Pascual V, Allantaz F, Arce E, Punaro M, Banchereau J (2005) Role of interleukin-1 (IL-1) in the pathogenesis of systemic onset juvenile idiopathic arthritis and clinical response to IL-1 blockade. J Exp Med 201:1479–1486. doi:10.1084/jem.20050473

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. DeWitt EM et al (2012) Consensus treatment plans for new-onset systemic juvenile idiopathic arthritis. Arthritis Care Res 64:1001–1010. doi:10.1002/acr.21625

    CAS  Google Scholar 

  64. Ringold S et al (2013) 2013 update of the 2011 American College of Rheumatology recommendations for the treatment of juvenile idiopathic arthritis: recommendations for the medical therapy of children with systemic juvenile idiopathic arthritis and tuberculosis screening among children receiving biologic medications. Arthritis Care Res 65:1551–1563. doi:10.1002/acr.22087

    Article  Google Scholar 

  65. Romberg N et al (2014) Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat Genet 46:1135–1139. doi:10.1038/ng.3066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Jeru I et al (2008) Mutations in NALP12 cause hereditary periodic fever syndromes. Proc Natl Acad Sci U S A 105:1614–1619. doi:10.1073/pnas.0708616105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Xu H et al (2014) Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature 513:237–241. doi:10.1038/nature13449

    Article  CAS  PubMed  Google Scholar 

  68. Masters SL et al (2010) Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1beta in type 2 diabetes. Nat Immunol 11:897–904. doi:10.1038/ni.1935

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Dinarello CA (2011) Blocking interleukin-1beta in acute and chronic autoinflammatory diseases. J Intern Med 269:16–28. doi:10.1111/j.1365-2796.2010.02313.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Lee YH, Bae SC, Song GG (2012) Omega-3 polyunsaturated fatty acids and the treatment of rheumatoid arthritis: a meta-analysis. Arch Med Res 43:356–362. doi:10.1016/j.arcmed.2012.06.011

    Article  CAS  PubMed  Google Scholar 

  71. Derrien M, van Hylckama Vlieg JE (2015) Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends Microbiol. doi:10.1016/j.tim.2015.03.002

    PubMed  Google Scholar 

Download references

Acknowledgments

I thank Dr. K. Minden and Dr. L. Martin for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tilmann Kallinich.

Additional information

This article is a contribution to the Special Issue on The Inflammasome and Autoinflammatory Diseases - Guest Editors: Seth L. Masters Tilmann Kallinich and Seza Ozen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kallinich, T. Regulating against the dysregulation: new treatment options in autoinflammation. Semin Immunopathol 37, 429–437 (2015). https://doi.org/10.1007/s00281-015-0501-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-015-0501-9

Keywords

Navigation