Skip to main content

Advertisement

Log in

Modulation of glomerulosclerosis

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Regardless of the initial injury, the long-term consequence for the patient depends upon the ensuing balance of profibrotic vs reparative modulators activated. The glomerulus has some capacity for repair. Even when sclerosis has developed with accumulation of extracellular matrix, this lesion may be remodeled, with a change in balance between profibrotic and antifibrotic and collagen synthesis vs proteolytic mediators. We will focus here on the interplay between mediators of fibrosis and reparative mechanisms and potential regression of fibrosis. Based on the clinical efficacy of interventions that inhibit angiotensin, we will focus on factors related to the renin–angiotensin system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Fogo AB (2001) Progression and potential regression of glomerulosclerosis (Nephrology Forum). Kidney Int 59:804–819

    PubMed  CAS  Google Scholar 

  2. Brown NJ, Nakamura S, Ma L-J, Nakamura I, Donnert E, Freeman M, Vaughan DE, Fogo AB (2000) Aldosterone modulates plasminogen activator inhibitor-1 and glomerulosclerosis in vivo. Kidney Int 58:1219–1227

    PubMed  CAS  Google Scholar 

  3. Fogo AB (2006) Can glomerulosclerosis be reversed? Nat Clin Pract Nephrol 2:290–291

    PubMed  Google Scholar 

  4. Adamczak M, Gross ML, Krtil J, Koch A, Tyralla K, Amann K, Ritz E (2003) Reversal of glomerulosclerosis after high-dose enalapril treatment in subtotally nephrectomized rats. J Am Soc Nephrol 14:2833–2842

    PubMed  CAS  Google Scholar 

  5. Fujihara CK, Velho M, Malheiros DM, Zatz R (2005) An extremely high dose of losartan affords superior renoprotection in the remnant model. Kidney Int 67:1913–1924

    PubMed  CAS  Google Scholar 

  6. Ma L-J, Nakamura S, Aldigier JC, Rossini M, Yang HC, Liang XB, Nakamura I, Marcantoni C, Fogo AB (2005) Regression of glomerulosclerosis with high-dose angiotensin inhibition is linked to decreased plasminogen activator inhibitor-1. J Am Soc Nephrol 16:966–976

    PubMed  CAS  Google Scholar 

  7. Zoja C, Corna D, Camozzi D, Cattaneo D, Rottoli D, Batani C, Zanchi C, Abbate M, Remuzzi G (2002) How to fully protect the kidney in a severe model of progressive nephropathy: a multidrug approach. J Am Soc Nephrol 13:2898–2908

    PubMed  CAS  Google Scholar 

  8. Aldigier JC, Kanjanbuch T, Ma LJ, Brown NJ, Fogo AB (2005) Regression of existing glomerulosclerosis by inhibition of aldosterone. J Am Soc Nephrol 16:3306–3314

    PubMed  CAS  Google Scholar 

  9. Eremina V, Sood M, Haigh J, Nagy A, Lajoie G, Ferrara N, Gerber HP, Kikkawa Y, Miner JH, Quaggin SE (2003) Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J Clin Invest 111:707–716

    PubMed  CAS  Google Scholar 

  10. Satchell SC, Mathieson PW (2003) Angiopoietins: microvascular modulators with potential roles in glomerular pathophysiology. J Nephrol 16:168–178

    PubMed  CAS  Google Scholar 

  11. Harvey SJ, Miner JH (2007) Breaking down the barrier: evidence against a role for heparan sulfate in glomerular permselectivity. J Am Soc Nephrol 18:672–674

    PubMed  CAS  Google Scholar 

  12. Kang DH, Hughes J, Mazzali M, Schreiner GF, Johnson RJ (2001) Impaired angiogenesis in the remnant kidney model: II. Vascular endothelial growth factor administration reduces renal fibrosis and stabilizes renal function.. J Am Soc Nephrol 12:1448–1457

    PubMed  CAS  Google Scholar 

  13. Adamczak M, Gross ML, Amann K, Ritz E (2004) Reversal of glomerular lesions involves coordinated restructuring of glomerular microvasculature. J Am Soc Nephrol 15:3063–3072

    PubMed  Google Scholar 

  14. Scruggs B, Donnert E, Ma L-J, Bertram J, Fogo AB (2005) Capillary branching contributes to regression of sclerosis by angiotensin receptor blocker (ARB). J Am Soc Nephrol 16:674A

    Google Scholar 

  15. Liang XB, Ma LJ, Naito T, Wang Y, Madaio M, Zent R, Pozzi A, Fogo AB (2006) Angiotensin type 1 receptor blocker restores podocyte potential to promote glomerular endothelial cell growth. J Am Soc Nephrol 17:1886–1895

    PubMed  CAS  Google Scholar 

  16. Ma L-J, Fogo AB (2001) Role of angiotensin II in glomerular injury. Semin Nephrol 21:544–553

    PubMed  CAS  Google Scholar 

  17. Turner AJ, Hiscox JA, Hooper NM (2004) ACE2: from vasopeptidase to SARS virus receptor. Trends Pharmacol Sci 25:291–294

    PubMed  CAS  Google Scholar 

  18. Ferrario CM, Chappell MC (2004) Novel angiotensin peptides. Cell Mol Life Sci 61:2720–2727

    PubMed  CAS  Google Scholar 

  19. Nguyen G (2007) The (pro)renin receptor: pathophysiological roles in cardiovascular and renal pathology. Curr Opin Nephrol Hypertens 16:129–133

    PubMed  CAS  Google Scholar 

  20. Kaschina E, Unger T (2003) Angiotensin AT1/AT2 receptors: regulation, signalling and function. Blood Press 12:70–88

    PubMed  CAS  Google Scholar 

  21. Ruiz-Ortega M, Esteban V, Suzuki Y, Ruperez M, Mezzano S, Ardiles L, Justo P, Ortiz A, Egido J (2003) Renal expression of angiotensin type 2 (AT2) receptors during kidney damage. Kidney Int 64(Suppl 86):S21–S26

    Google Scholar 

  22. Cresci B, Giannini S, Pala L, Mavilia C, Manuelli C, Cappugi P, Maggi E, Rotella CM (2003) AT1 and AT2 receptors in human glomerular endothelial cells at different passages. Microvasc Res 66:22–29

    PubMed  CAS  Google Scholar 

  23. Abadir PM, Carey RM, Siragy HM (2003) Angiotensin AT2 receptors directly stimulate renal nitric oxide in bradykinin B2-receptor-null mice. Hypertension 42:600–604

    PubMed  CAS  Google Scholar 

  24. Chabrashvili T, Kitiyakara C, Blau J, Karber A, Aslam S, Welch WJ, Wilcox CS (2003) Effects of ANG II type 1 and 2 receptors on oxidative stress, renal NADPH oxidase, and SOD expression. Am J Physiol Regul Integr Comp Physiol 285:R117–R124

    PubMed  CAS  Google Scholar 

  25. Wolf G (2002) “The road not taken”: role of angiotensin II type 2 receptor in pathophysiology. Nephrol Dial Transplant 17:195–198

    PubMed  CAS  Google Scholar 

  26. Wolf G, Ziyadeh FN, Thaiss F, Tomaszewski J, Caron RJ, Wenzel U, Zahner G, Helmchen U, Stahl RA (1997) Angiotensin II stimulates expression of the chemokine RANTES in rat glomerular endothelial cells. Role of the angiotensin type 2 receptor.. J Clin Invest 100:1047–1058

    PubMed  CAS  Google Scholar 

  27. Ruiz-Ortega M, Lorenzo O, Ruperez M, Konig S, Wittig B, Egido J (2000) Angiotensin II activates nuclear transcription factor kappaB through AT(1) and AT(2) in vascular smooth muscle cells: molecular mechanisms. Circ Res 86:1266–1272

    PubMed  CAS  Google Scholar 

  28. Ruiz-Ortega M, Lorenzo O, Ruperez M, Blanco J, Egido J (2001) Systemic infusion of angiotensin II into normal rats activates nuclear factor-kappaB and AP-1 in the kidney: role of AT(1) and AT(2) receptors. Am J Pathol 158:1743–1756

    PubMed  CAS  Google Scholar 

  29. Ma J, Nishimura H, Fogo AB, Kon V, Inagami T, Ichikawa I (1998) Accelerated fibrosis and collagen deposition develop in the renal interstitium of angiotensin type 2 receptor null mutant mice during ureteral obstruction. Kidney Int 53:937–944

    PubMed  CAS  Google Scholar 

  30. Ohkubo N, Matsubara H, Nozawa Y et al (1997) Angiotensin type 2 receptors are reexpressed by cardiac fibroblasts from failing myopathic hamster hearts and inhibit cell growth and fibrillar collagen metabolism. Circulation 96:3954–3962

    PubMed  CAS  Google Scholar 

  31. Durvasula RV, Petermann AT, Hiromura K, Blonski M, Pippin J, Mundel P, Pichler R, Griffin S, Couser WG, Shankland SJ (2004) Activation of a local tissue angiotensin system in podocytes by mechanical strain. Kidney Int 65:30–39

    PubMed  CAS  Google Scholar 

  32. Miura S, Karnik SS (2000) Ligand-independent signals from angiotensin II type 2 receptor induce apoptosis. Embo J 19:4026–4035

    PubMed  CAS  Google Scholar 

  33. Hashimoto N, Maeshima Y, Satoh M, Odawara M, Sugiyama H, Kashihara N, Matsubara H, Yamasaki Y, Makino H (2004) Overexpression of angiotensin type 2 receptor ameliorates glomerular injury in a mouse remnant kidney model. Am J Physiol Renal Physiol 286:F516–F525

    PubMed  CAS  Google Scholar 

  34. Naito T, Ma LJ, Donner E, Fogo AB (2005) Angiotensin type 2 receptor antagonist (AT2RA) worsens glomerulosclerosis in the rat remnant kidney model. J Am Soc Nephrol 16:654A

    Google Scholar 

  35. Cao Z, Bonnet F, Candido R, Nesteroff SP, Burns WC, Kawachi H, Shimizu F, Carey RM, De Gasparo M, Cooper ME (2002) Angiotensin type 2 receptor antagonism confers renal protection in a rat model of progressive renal injury. J Am Soc Nephrol 13:1773–1787

    PubMed  CAS  Google Scholar 

  36. Loskutoff DJ, Edgington TS (1981) An inhibitor of plasminogen activator in rabbit endothelial cells. J Biol Chem 256:4142–4145

    PubMed  CAS  Google Scholar 

  37. Lijnen HR (2005) Pleiotropic functions of plasminogen activator inhibitor-1. Thromb Haemost 3:35–45

    CAS  Google Scholar 

  38. Dellas C, Loskutoff DJ (2005) Historical analysis of PAI-1 from its discovery to its potential role in cell motility and disease. Thromb Haemost 93:631–640

    PubMed  CAS  Google Scholar 

  39. Eddy AA (2002) Plasminogen activator inhibitor-1 and the kidney. Am J Physiol Renal Physiol 283:F209–F220

    PubMed  CAS  Google Scholar 

  40. Fogo AB (2000) The role of angiotensin II and plasminogen activator inhibitor-1 in progressive glomerulosclerosis. Am J Kidney Dis 35:179–188

    PubMed  CAS  Google Scholar 

  41. Eddy AA, Fogo AB (2006) Plasminogen activator inhibitor-1 in chronic kidney disease: evidence and mechanisms of action. J Am Soc Nephrol 17:2999–3012

    PubMed  CAS  Google Scholar 

  42. Nakamura S, Nakamura I, Ma L-J, Vaughan DE, Fogo AB (2000) Plasminogen activator inhibitor-1 expression is regulated by the angiotensin type 1 receptor in vivo. Kidney Int 58:251–259

    PubMed  CAS  Google Scholar 

  43. Brown NJ, Kim KS, Chen YQ, Blevins LS, Nadeau JH, Meranze SG, Vaughan DE (2000) Synergistic effect of adrenal steroids and angiotensin II on plasminogen activator inhibitor-1 production. J Clin Endocrinol Metab 85:336–344

    PubMed  CAS  Google Scholar 

  44. Sawathiparnich P, Murphey LJ, Kumar S, Vaughan DE, Brown NJ (2003) Effect of combined AT1 receptor and aldosterone receptor antagonism on plasminogen activator inhibitor-1. J Clin Endocrinol Metab 88:3867–3873

    PubMed  CAS  Google Scholar 

  45. Ishikawa A, Ohta N, Ozono S, Kawabe K, Kitamura T (2005) Inhibition of plasminogen activator inhibitor-1 by angiotensin II receptor blockers on cyclosporine-treated renal allograft recipients. Transplant Proc 37:994–996

    PubMed  CAS  Google Scholar 

  46. Lahlou A, Peraldi MN, Thervet E, Flahault A, Delarue F, Soubrier F, Rossert J, Hertig A, Rondeau E (2002) Chronic graft dysfunction in renal transplant patients: potential role of plasminogen activator inhibitor type 1. Transplantation 73:1290–1295

    PubMed  CAS  Google Scholar 

  47. Ma LJ, Naito T, Han JY, Fogo AB (2005) Plasminogen activator inhibitor-1 (PAI-1) deficiency prevents the development of glomerulosclerosis in the subtotal nephrectomy (5/6 Nx) in the mouse. J Am Soc Nephrol 16:653A

    Google Scholar 

  48. Naito T, Rodriguez G, Borza D-B, Ma LJ, Pozzi A, Fogo AB (2006) Podocyte PAI-1 affects angiotensin II (AngII)-induced ECM accumulation. Lab Invest 86:264A

    Google Scholar 

  49. Weisberg AD, Albornoz F, Griffin JP, Crandall DL, Elokdah H, Fogo AB, Vaughan DE, Brown NJ (2005) Pharmacological inhibition and genetic deficiency of plasminogen activator inhibitor-1 attenuates angiotensin II/salt-induced aortic remodeling. Arterioscler Thromb Vasc Biol 25:365–371

    PubMed  CAS  Google Scholar 

  50. Kaikita K, Fogo AB, Ma L, Schoenhard JA, Brown NJ, Vaughan DE (2001) Plasminogen activator inhibitor-1 deficiency prevents hypertension and vascular fibrosis in response to long-term nitric oxide synthase inhibition. Circulation 104:839–844

    PubMed  CAS  Google Scholar 

  51. Kaikita K, Schoenhard JA, Painter CA, Ripley RT, Brown NJ, Fogo AB, Vaughan DE (2002) Potential roles of plasminogen activator system in coronary vascular remodeling induced by long-term nitric oxide synthase inhibition. J Mol Cell Cardiol 34:617–627

    PubMed  CAS  Google Scholar 

  52. Oda T, Kim HG, Wing D, Lopez-Guisa J, Jernigan S, Eddy AA (1999) Effects of genetic PAI-1 deficiency in mice with protein-overload proteinuria. J Am Soc Nephrol 10:578A

    Google Scholar 

  53. Oda T, Jung YO, Kim HS, Cai X, Lopez-Guisa JM, Ikeda Y, Eddy AA (2001) PAI-1 deficiency attenuates the fibrogenic response to ureteral obstruction. Kidney Int 60:587–596

    PubMed  CAS  Google Scholar 

  54. Matsuo S, Lopez-Guisa JM, Cai X, Okamura DM, Alpers CE, Bumgarner RE, Peters MA, Zhang G, Eddy AA (2005) Multifunctionality of PAI-1 in fibrogenesis: evidence from obstructive nephropathy in PAI-1-overexpressing mice. Kidney Int 67:2221–2238

    PubMed  CAS  Google Scholar 

  55. Sharma K, Ziyadeh FN (1994) The emerging role of transforming growth factor-beta in kidney diseases. Am J Physiol 266:F829–F842

    PubMed  CAS  Google Scholar 

  56. Lyons RM, Gentry LE, Purchio AF, Moses HL (1990) Mechanism of activation of latent recombinant transforming growth factor-beta 1 by plasmin. J Cell Biol 110:1361–1367

    PubMed  CAS  Google Scholar 

  57. Schultz-Cherry S, Chen H, Mosher DF, Misenheimer TM, Krutzsch HC, Roberts DD, Murphy-Ullrich JE (1995) Regulation of transforming growth factor-beta activation by discrete sequences of thrombospondin 1. J Biol Chem 270:7304–7310

    PubMed  CAS  Google Scholar 

  58. Munger JS, Huang X, Kawakatsu H, Griffiths MJ, Dalton SL, Wu J, Pittet JF, Kaminski N, Garat C, Matthay MA, Rifkin DB, Sheppard D (1999) The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96:319–328

    PubMed  CAS  Google Scholar 

  59. Arend LJ, Smart AM, Briggs JP (2000) Mouse beta(6) integrin sequence, pattern of expression, and role in kidney development. J Am Soc Nephrol 11:2297–2305

    PubMed  CAS  Google Scholar 

  60. Ma LJ, Yang HC, Gaspert A, Carlesso G, Barty MM, Davidson JM, Sheppard D, Fogo AB (2003) Transforming growth factor β (TGF-β dependent and independent pathways of induction of tubulointerstitial fibrosis in β6−/− mice. Am J Pathol 163:1261–1273

    PubMed  CAS  Google Scholar 

  61. Krag S, Danielsen CC, Carmeliet P, Nyengaard J, Wogensen L (2005) Plasminogen activator inhibitor-1 gene deficiency attenuates TGF-beta1-induced kidney disease. Kidney Int 68:2651–2666

    PubMed  CAS  Google Scholar 

  62. Huang Y, Wongamorntham S, Kasting J, McQuillan D, Owens RT, Yu L, Noble NA, Border W (2006) Renin increases mesangial cell transforming growth factor-beta1 and matrix proteins through receptor-mediated, angiotensin II-independent mechanisms. Kidney Int 69:105–113

    PubMed  CAS  Google Scholar 

  63. Yu L, Border WA, Anderson I, McCourt M, Huang Y, Noble NA (2004) Combining TGF-beta inhibition and angiotensin II blockade results in enhanced antifibrotic effect. Kidney Int 66:1774–1784

    PubMed  CAS  Google Scholar 

  64. Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, Allen R, Sidman C, Proetzel G, Calvin D (1992) Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 359:693–699

    PubMed  CAS  Google Scholar 

  65. Aoki CA, Borchers AT, Li M, Flavell RA, Bowlus CL, Ansari AA, Gershwin ME (2005) Transforming growth factor beta (TGF-beta) and autoimmunity. Autoimmun Rev 4:450–459

    PubMed  CAS  Google Scholar 

  66. Ma LJ, Jha S, Ling H, Pozzi A, Ledbetter S, Fogo AB (2004) Divergent effects of low versus high dose anti-TGF-beta antibody in puromycin aminonucleoside nephropathy in rats. Kidney Int 65:106–115

    PubMed  CAS  Google Scholar 

  67. Redmond EM, Cullen JP, Cahill PA, Sitzmann JV, Stefansson S, Lawrence DA, Okada SS (2001) Endothelial cells inhibit flow-induced smooth muscle cell migration: role of plasminogen activator inhibitor-1. Circulation 103:597–603

    PubMed  CAS  Google Scholar 

  68. Proia RR, Nelson PR, Mulligan-Kehoe MJ, Wagner RJ, Kehas AJ, Powell RJ (2002) The effect of endothelial cell overexpression of plasminogen activator inhibitor-1 on smooth muscle cell migration. J Vasc Surg 36:164–171

    PubMed  Google Scholar 

  69. Huang Y, Haraguchi M, Lawrence DA, Border WA, Yu L, Noble NA (2003) A mutant, noninhibitory plasminogen activator inhibitor type 1 decreases matrix accumulation in experimental glomerulonephritis. J Clin Invest 112:379–388

    PubMed  CAS  Google Scholar 

  70. Fogo AB (2003) Renal fibrosis: not just PAI-1 in the sky. J Clin Invest 112:326–328

    PubMed  CAS  Google Scholar 

  71. Herz J, Strickland DK (2001) LRP: a multifunctional scavenger and signaling receptor. J Clin Invest 108:779–784

    PubMed  CAS  Google Scholar 

  72. Czekay R-P, Aertgeerts K, Curriden S, Loskutoff D (2003) Plasminogen activator inhibitor-1 detaches cells from extracellular matrices by inactivating integrins. J Cell Biol 160:781–791

    PubMed  CAS  Google Scholar 

  73. Degryse B, Neels JG, Czekay RP, Aertgeerts K, Kamikubo Y, Loskutoff DJ (2004) The low density lipoprotein receptor-related protein is a motogenic receptor for plasminogen activator inhibitor-1. J Biol Chem 279:22595–22604

    PubMed  CAS  Google Scholar 

  74. Cao C, Lawrence DA, Li Y, Von Arnim CA, Herz J, Su EJ, Makarova A, Hyman BT, Strickland DK, Zhang L (2006) Endocytic receptor LRP together with tPA and PAI-1 coordinates Mac-1-dependent macrophage migration. Embo J 25:1860–1870

    PubMed  CAS  Google Scholar 

  75. Huff T, Rosorius O, Otto AM, Muller CS, Ballweber E, Hannappel E, Mannherz HG (2004) Nuclear localisation of the G-actin sequestering peptide thymosin beta4. J Cell Sci 117:5333–5341

    PubMed  CAS  Google Scholar 

  76. Mora CA, Baumann CA, Paino JE, Goldstein AL, Badamchian M (1997) Biodistribution of synthetic thymosin beta 4 in the serum, urine, and major organs of mice. Int J Immunopharmacol 19:1–8

    PubMed  CAS  Google Scholar 

  77. Huff T, Otto AM, Muller CS, Meier M, Hannappel E (2002) Thymosin beta4 is released from human blood platelets and attached by factor XIIIa (transglutaminase) to fibrin and collagen. Faseb J 16:691–696

    PubMed  CAS  Google Scholar 

  78. Sosne G, Xu L, Prach L, Mrock LK, Kleinman HK, Letterio JJ, Hazlett LD, Kurpakus-Wheater M (2004) Thymosin beta 4 stimulates laminin-5 production independent of TGF-beta. Exp Cell Res 293:175–183

    PubMed  CAS  Google Scholar 

  79. Bock-Marquette I, Saxena A, White MD, Dimaio JM, Srivastava D (2004) Thymosin beta4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature 432:466–472

    PubMed  CAS  Google Scholar 

  80. Smart N, Risebro CA, Melville AA, Moses K, Schwartz RJ, Chien KR, Riley PR (2007) Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization. Nature 445:177–182

    PubMed  CAS  Google Scholar 

  81. Xu BJ, Shyr Y, Liang X, Ma LJ, Donnert EM, Roberts JD, Zhang X, Kon V, Brown NJ, Caprioli RM, Fogo AB (2005) Proteomic patterns and prediction of glomerulosclerosis and its mechanisms. J Am Soc Nephrol 16:2967–2975

    PubMed  CAS  Google Scholar 

  82. Orhan D, Donnert EM, Xu BJ, Gaspert A, Ma J, Fogo AB (2007) Thymosin beta4 is incresaed in renal interstitial fibrosis. Lab Invest 87:274A

    Google Scholar 

  83. Azizi M, Ezan E, Nicolet L, Grognet JM, Menard J (1997) High plasma level of N-acetyl-seryl-aspartyl-lysyl-proline: a new marker of chronic angiotensin-converting enzyme inhibition. Hypertension 30:1015–1019

    PubMed  CAS  Google Scholar 

  84. Azizi M, Rousseau A, Ezan E, Guyene TT, Michelet S, Grognet JM, Lenfant M, Corvol P, Menard J (1996) Acute angiotensin-converting enzyme inhibition increases the plasma level of the natural stem cell regulator N-acetyl-seryl-aspartyl-lysyl-proline. J Clin Invest 97:839–844

    PubMed  CAS  Google Scholar 

  85. Peng H, Carretero OA, Vuljaj N, Liao TD, Motivala A, Peterson EL, Rhaleb NE (2005) Angiotensin-converting enzyme inhibitors: a new mechanism of action. Circulation 112:2436–1245

    PubMed  CAS  Google Scholar 

  86. Kanasaki K, Koya D, Sugimoto T, Isono M, Kashiwagi A, Haneda M (2003) N-Acetyl-seryl-aspartyl-lysyl-proline inhibits TGF-beta-mediated plasminogen activator inhibitor-1 expression via inhibition of Smad pathway in human mesangial cells. J Am Soc Nephrol 14:863–872

    PubMed  CAS  Google Scholar 

  87. Wang D, Carretero OA, Yang XY, Rhaleb NE, Liu YH, Liao TD, Yang XP (2004) N-acetyl-seryl-aspartyl-lysyl-proline stimulates angiogenesis in vitro and in vivo. Am J Physiol Heart Circ Physiol 287:H2099–H2105

    PubMed  CAS  Google Scholar 

  88. Omata M, Taniguchi H, Koya D, Kanasaki K, Sho R, Kato Y, Kojima R, Haneda M, Inomata N (2006) N-acetyl-seryl-aspartyl-lysyl-proline ameliorates the progression of renal dysfunction and fibrosis in WKY rats with established anti-glomerular basement membrane nephritis. J Am Soc Nephrol 17:674–685

    PubMed  CAS  Google Scholar 

  89. Shibuya K, Kanasaki K, Isono M, Sato H, Omata M, Sugimoto T, Araki S, Isshiki K, Kashiwagi A, Haneda M, Koya D (2005) N-acetyl-seryl-aspartyl-lysyl-proline prevents renal insufficiency and mesangial matrix expansion in diabetic db/db mice. Diabetes 54:838–845

    PubMed  CAS  Google Scholar 

  90. Rasoul S, Carretero OA, Peng H, Cavasin MA, Zhuo J, Sanchez-Mendoza A, Brigstock DR, Rhaleb NE (2004) Antifibrotic effect of Ac-SDKP and angiotensin-converting enzyme inhibition in hypertension. J Hypertens 22:593–603

    PubMed  CAS  Google Scholar 

  91. Peng H, Carretero OA, Brigstock DR, Oja-Tebbe N, Rhaleb NE (2003) Ac-SDKP reverses cardiac fibrosis in rats with renovascular hypertension. Hypertension 42:1164–1170

    PubMed  Google Scholar 

  92. Paueksakon P, Revelo MP, Ma LJ, Marcantoni C, Fogo AB (2002) Microangiopathic injury and augmented PAI-1 in human diabetic nephropathy. Kidney Int 61:2142–2148

    PubMed  CAS  Google Scholar 

  93. Nishida M, Fujinaka H, Matsusaka T, Price J, Kon V, Fogo AB, Davidson JM, Linton MF, Fazio S, Homma T, Yoshida H, Ichikawa I (2002) Absence of angiotensin II type 1 receptor in bone marrow-derived cells is detrimental in the evolution of renal fibrosis. J Clin Invest 110:1859–1868

    PubMed  CAS  Google Scholar 

  94. Kambham N, Markowitz GS, Valeri AM, Lin J, D'Agati VD (2001) Obesity-related glomerulopathy: an emerging epidemic. Kidney Int 59:1498–1509

    PubMed  CAS  Google Scholar 

  95. Praga M, Morales E (2006) Weight loss and proteinuria. Contrib Nephrol 151:221–229

    Article  PubMed  Google Scholar 

  96. Ross WR, McGill JB (2006) Epidemiology of obesity and chronic kidney disease. Adv Chronic Kidney Dis 13:325–335

    PubMed  Google Scholar 

  97. Lastra G, Manrique C, Sowers JR (2006) Obesity, cardiometabolic syndrome, and chronic kidney disease: the weight of the evidence. Adv Chronic Kidney Dis 13:365–373

    PubMed  Google Scholar 

  98. Praga M, Morales E (2006) Obesity, proteinuria and progression of renal failure. Curr Opin Nephrol Hypertens 15:481–486

    Article  PubMed  Google Scholar 

  99. Ahima RS, Flier JS (2000) Adipose tissue as an endocrine organ. Trends Endocrinol Metab 11:327–332

    PubMed  CAS  Google Scholar 

  100. Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259:87–91

    PubMed  CAS  Google Scholar 

  101. Massiera F, Bloch-Faure M, Ceiler D, Murakami K, Fukamizu A, Gasc JM, Quignard-Boulange A, Negrel R, Ailhaud G, Seydoux J, Meneton P, Teboul M (2001) Adipose angiotensinogen is involved in adipose tissue growth and blood pressure regulation. FASEB J 15:2727–2729

    PubMed  CAS  Google Scholar 

  102. Kouyama R, Suganami T, Nishida J, Tanaka M, Toyoda T, Kiso M, Chiwata T, Miyamoto Y, Yoshimasa Y, Fukamizu A, Horiuchi M, Hirata Y, Ogawa Y (2005) Attenuation of diet-induced weight gain and adiposity through increased energy expenditure in mice lacking angiotensin II type 1a receptor. Endocrinology 146:3481–3489

    PubMed  CAS  Google Scholar 

  103. Ma LJ, Mao SL, Taylor KL, Kanjanabuch T, Guan Y, Zhang Y, Brown NJ, Swift LL, McGuinness OP, Wasserman DH, Vaughan DE, Fogo AB (2004) Prevention of obesity and insulin resistance in mice lacking plasminogen activator inhibitor 1. Diabetes 53:336–346

    PubMed  CAS  Google Scholar 

  104. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808

    PubMed  CAS  Google Scholar 

  105. Wellen KE, Hotamisligil GS (2003) Obesity-induced inflammatory changes in adipose tissue. J Clin Invest 112:1785–1788

    PubMed  CAS  Google Scholar 

  106. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112:1821–1830

    PubMed  CAS  Google Scholar 

  107. van Dielen FM, Buurman WA, Hadfoune M, Nijhuis J, Greve JW (2004) Macrophage inhibitory factor, plasminogen activator inhibitor-1, other acute phase proteins, and inflammatory mediators normalize as a result of weight loss in morbidly obese subjects treated with gastric restrictive surgery. J Clin Endocrinol Metab 89:4062–4068

    PubMed  Google Scholar 

  108. Bruun JM, Helge JW, Richelsen B, Stallknecht B (2006) Diet and exercise reduce low-grade inflammation and macrophage infiltration in adipose tissue but not in skeletal muscle in severely obese subjects. Am J Physiol Endocrinol Metab 290:E961–E967

    PubMed  CAS  Google Scholar 

  109. Takahashi K, Mizuarai S, Araki H, Mashiko S, Ishihara A, Kanatani A, Itadani H, Kotani H (2003) Adiposity elevates plasma MCP-1 levels leading to the increased CD11b-positive monocytes in mice. J Biol Chem 278:46654–46660

    PubMed  CAS  Google Scholar 

  110. Neels JG, Olefsky JM (2006) Inflamed fat: what starts the fire? J Clin Invest 116:33–35

    PubMed  CAS  Google Scholar 

  111. Weisberg SP, Hunter D, Huber R, Lemieux J, Slaymaker S, Vaddi K, Charo I, Leibel RL, Ferrante AW Jr (2006) CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest 116:115–124

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnes B. Fogo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, LJ., Fogo, A.B. Modulation of glomerulosclerosis. Semin Immunopathol 29, 385–395 (2007). https://doi.org/10.1007/s00281-007-0087-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-007-0087-y

Keywords

Navigation