Skip to main content

Advertisement

Log in

The role of alternative splicing in lung cancer

  • Review Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Aberrant alternative splicing (AS) events are frequently observed in lung cancer, which can be attributed to aberrant gene AS, alterations in splicing regulatory factors, or changes in splicing regulatory mechanisms. Consequently, the dysregulation of alternative RNA splicing is the fundamental cause of lung cancer. In this review, we have summarized the pivotal role of AS in the development, progression, invasion, metastasis, angiogenesis, and drug resistance of lung cancer. Ultimately, this review emphasizes the potential of AS as biomarkers in lung cancer prognosis and diagnosis, and introduces some applications of AS isoform in the treatment of lung cancer. The comprehension of the AS may provide a glimmer of hope for the eradication of lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

This review contains two supplemental materials, the details of which can be seen in supplemental files.

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A (2022) Cancer statistics, 2022. CA Cancer J Clin 72:7–33. https://doi.org/10.3322/caac.21708

    Article  PubMed  Google Scholar 

  2. Thai AA, Solomon BJ, Sequist LV, Gainor JF, Heist RS (2021) Lung cancer. Lancet 398:535–554. https://doi.org/10.1016/s0140-6736(21)00312-3

    Article  PubMed  Google Scholar 

  3. Travis WD, Brambilla E, Nicholson AG, Yatabe Y, Austin JHM, Beasley MB, Chirieac LR, Dacic S, Duhig E, Flieder DB, Geisinger K, Hirsch FR, Ishikawa Y, Kerr KM, Noguchi M, Pelosi G, Powell CA, Tsao MS, Wistuba I (2015) The 2015 world health organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol 10:1243–1260. https://doi.org/10.1097/jto.0000000000000630

    Article  PubMed  Google Scholar 

  4. Herbst RS, Morgensztern D, Boshoff C (2018) The biology and management of non-small cell lung cancer. Nature 553:446–454. https://doi.org/10.1038/nature25183

    Article  CAS  PubMed  Google Scholar 

  5. Chow LT, Gelinas RE, Broker TR, Roberts RJ (1977) An amazing sequence arrangement at the 5′ ends of adenovirus 2 messenger RNA. Cell 12:1–8. https://doi.org/10.1016/0092-8674(77)90180-5

    Article  CAS  PubMed  Google Scholar 

  6. Wahl MC, Lührmann R (2015) SnapShot: spliceosome dynamics I. Cell 161:1474-e1471. https://doi.org/10.1016/j.cell.2015.05.050

    Article  CAS  PubMed  Google Scholar 

  7. Hegele A, Kamburov A, Grossmann A, Sourlis C, Wowro S, Weimann M, Will CL, Pena V, Lührmann R, Stelzl U (2012) Dynamic protein-protein interaction wiring of the human spliceosome. Mol Cell 45:567–580. https://doi.org/10.1016/j.molcel.2011.12.034

    Article  CAS  PubMed  Google Scholar 

  8. Rossbach O, Hung LH, Schreiner S, Grishina I, Heiner M, Hui J, Bindereif A (2009) Auto- and cross-regulation of the hnRNP L proteins by alternative splicing. Mol Cell Biol 29:1442–1451. https://doi.org/10.1128/mcb.01689-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cáceres JF, Kornblihtt AR (2002) Alternative splicing: multiple control mechanisms and involvement in human disease. Trends Genet 18:186–193. https://doi.org/10.1016/s0168-9525(01)02626-9

    Article  PubMed  Google Scholar 

  10. Llorian M, Schwartz S, Clark TA, Hollander D, Tan LY, Spellman R, Gordon A, Schweitzer AC, de la Grange P, Ast G, Smith CW (2010) Position-dependent alternative splicing activity revealed by global profiling of alternative splicing events regulated by PTB. Nat Struct Mol Biol 17:1114–1123. https://doi.org/10.1038/nsmb.1881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ladd AN (2013) CUG-BP, Elav-like family (CELF)-mediated alternative splicing regulation in the brain during health and disease. Mol Cell Neurosci 56:456–464. https://doi.org/10.1016/j.mcn.2012.12.003

    Article  CAS  PubMed  Google Scholar 

  12. Eilertsen IA, Sveen A, Strømme JM, Skotheim RI, Nesbakken A, Lothe RA (2019) Alternative splicing expands the prognostic impact of KRAS in microsatellite stable primary colorectal cancer. Int J Cancer 144:841–847. https://doi.org/10.1002/ijc.31809

    Article  CAS  PubMed  Google Scholar 

  13. Matlin AJ, Clark F, Smith CW (2005) Understanding alternative splicing: towards a cellular code. Nat Rev Mol Cell Biol 6:386–398. https://doi.org/10.1038/nrm1645

    Article  CAS  PubMed  Google Scholar 

  14. Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40:1413–1415. https://doi.org/10.1038/ng.259

    Article  CAS  PubMed  Google Scholar 

  15. Keren H, Lev-Maor G, Ast G (2010) Alternative splicing and evolution: diversification, exon definition and function. Nat Rev Genet 11:345–355. https://doi.org/10.1038/nrg2776

    Article  CAS  PubMed  Google Scholar 

  16. Sugnet CW, Kent WJ, Ares M Jr, Haussler D (2004) Transcriptome and genome conservation of alternative splicing events in humans and mice. Pac Symp Biocomput. https://doi.org/10.1142/9789812704856_0007

    Article  PubMed  Google Scholar 

  17. Climente-González H, Porta-Pardo E, Godzik A, Eyras E (2017) The functional impact of alternative splicing in cancer. Cell Rep 20:2215–2226. https://doi.org/10.1016/j.celrep.2017.08.012

    Article  CAS  PubMed  Google Scholar 

  18. Coomer AO, Black F, Greystoke A, Munkley J, Elliott DJ (2019) Alternative splicing in lung cancer. Biochim Biophys Acta Gene Regul Mech 1862:194388. https://doi.org/10.1016/j.bbagrm.2019.05.006

    Article  CAS  PubMed  Google Scholar 

  19. Pio R, Montuenga LM (2009) Alternative splicing in lung cancer. J Thorac Oncol 4:674–678. https://doi.org/10.1097/JTO.0b013e3181a520dc

    Article  PubMed  Google Scholar 

  20. Mizera-Nyczak E, Dyszkiewicz W, Heider KH, Zeromski J (2001) Isoform expression of CD44 adhesion molecules, Bcl-2, p53 and Ki-67 proteins in lung cancer. Tumour Biol 22:45–53. https://doi.org/10.1159/000030154

    Article  CAS  PubMed  Google Scholar 

  21. Yuan Y, Sun L, Wang X, Chen J, Jia M, Zou Y, Sa H, Cai Y, Xu Y, Sun C, Guo Y, Li H, Ma K (2019) Identification of a new GLDC gene alternative splicing variant and its protumorigenic roles in lung cancer. Future Oncol 15:4127–4139. https://doi.org/10.2217/fon-2019-0403

    Article  CAS  PubMed  Google Scholar 

  22. Kure S, Kato K, Dinopoulos A, Gail C, DeGrauw TJ, Christodoulou J, Bzduch V, Kalmanchey R, Fekete G, Trojovsky A, Plecko B, Breningstall G, Tohyama J, Aoki Y, Matsubara Y (2006) Comprehensive mutation analysis of GLDC, AMT, and GCSH in nonketotic hyperglycinemia. Hum Mutat 27:343–352. https://doi.org/10.1002/humu.20293

    Article  CAS  PubMed  Google Scholar 

  23. Kanno E, Kawasaki O, Takahashi K, Takano K, Endo T (2018) DA-Raf, a dominant-negative antagonist of the Ras-ERK pathway, is a putative tumor suppressor. Exp Cell Res 362:111–120. https://doi.org/10.1016/j.yexcr.2017.11.008

    Article  CAS  PubMed  Google Scholar 

  24. Shimojo M, Shudo Y, Ikeda M, Kobashi T, Ito S (2013) The small cell lung cancer-specific isoform of RE1-silencing transcription factor (REST) is regulated by neural-specific Ser/Arg repeat-related protein of 100 kDa (nSR100). Mol Cancer Res 11:1258–1268. https://doi.org/10.1158/1541-7786.Mcr-13-0269

    Article  CAS  PubMed  Google Scholar 

  25. Liu Y, Dong QZ, Zhao Y, Dong XJ, Miao Y, Dai SD, Yang ZQ, Zhang D, Wang Y, Li QC, Zhao C, Wang EH (2009) P120-catenin isoforms 1A and 3A differently affect invasion and proliferation of lung cancer cells. Exp Cell Res 315:890–898. https://doi.org/10.1016/j.yexcr.2008.12.016

    Article  CAS  PubMed  Google Scholar 

  26. Fan YC, Min L, Chen H, Liu YL (2015) Alternative splicing isoform of T cell factor 4K suppresses the proliferation and metastasis of non-small cell lung cancer cells. Genet Mol Res 14:14009–14018. https://doi.org/10.4238/2015.October.29.20

    Article  CAS  PubMed  Google Scholar 

  27. Wang J, Liu T, Wang M, Lv W, Wang Y, Jia Y, Zhang R, Liu L (2020) SRSF1-dependent alternative splicing attenuates BIN1 expression in non-small cell lung cancer. J Cell Biochem 121:946–953. https://doi.org/10.1002/jcb.29366

    Article  CAS  PubMed  Google Scholar 

  28. Karlsson MC, Gonzalez SF, Welin J, Fuxe J (2017) Epithelial-mesenchymal transition in cancer metastasis through the lymphatic system. Mol Oncol 11:781–791. https://doi.org/10.1002/1878-0261.12092

    Article  PubMed  PubMed Central  Google Scholar 

  29. Iwano M (2010) EMT and TGF-beta in renal fibrosis. Front Biosci (Schol Ed) 2:229–238. https://doi.org/10.2741/s60

    Article  PubMed  Google Scholar 

  30. Zhao M, Mishra L, Deng CX (2018) The role of TGF-β/SMAD4 signaling in cancer. Int J Biol Sci 14:111–123. https://doi.org/10.7150/ijbs.23230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen CY, Jan CI, Pi WC, Wang WL, Yang PC, Wang TH, Karni R, Wang TC (2016) Heterogeneous nuclear ribonucleoproteins A1 and A2 modulate expression of Tid1 isoforms and EGFR signaling in non-small cell lung cancer. Oncotarget 7:16760–16772. https://doi.org/10.18632/oncotarget.7606

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wan R, Xu X, Ma L, Chen Y, Tang L, Feng J (2020) Novel alternatively spliced variants of smad4 expressed in TGF-β-induced EMT regulating proliferation and migration of A549 cells. Onco Targets Ther 13:2203–2213. https://doi.org/10.2147/ott.S247015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li S, Shen L, Huang L, Lei S, Cai X, Breitzig M, Zhang B, Yang A, Ji W, Huang M, Zheng Q, Sun H, Wang F (2019) PTBP1 enhances exon11a skipping in Mena pre-mRNA to promote migration and invasion in lung carcinoma cells. Biochim Biophys Acta Gene Regul Mech 1862:858–869. https://doi.org/10.1016/j.bbagrm.2019.04.006

    Article  CAS  PubMed  Google Scholar 

  34. Mao S, Li Y, Lu Z, Che Y, Huang J, Lei Y, Wang Y, Liu C, Wang X, Zheng S, Sun N, He J (2019) PHD finger protein 5A promoted lung adenocarcinoma progression via alternative splicing. Cancer Med 8:2429–2441. https://doi.org/10.1002/cam4.2115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Romero-Garcia S, Prado-Garcia H, Lopez-Gonzalez JS (2014) Transcriptional analysis of hnRNPA0, A1, A2, B1, and A3 in lung cancer cell lines in response to acidosis, hypoxia, and serum deprivation conditions. Exp Lung Res 40:12–21. https://doi.org/10.3109/01902148.2013.856049

    Article  CAS  PubMed  Google Scholar 

  36. Melincovici CS, Boşca AB, Şuşman S, Mărginean M, Mihu C, Istrate M, Moldovan IM, Roman AL, Mihu CM (2018) Vascular endothelial growth factor (VEGF)—key factor in normal and pathological angiogenesis. Rom J Morphol Embryol 59:455–467

    PubMed  Google Scholar 

  37. Mei H, Wang Y, Fan J, Lin Z (2016) Alternative splicing of S6K1 promotes non-small cell lung cancer survival. Tumour Biol 37:13369–13376. https://doi.org/10.1007/s13277-016-5253-1

    Article  CAS  PubMed  Google Scholar 

  38. Berndorff D, Borkowski S, Moosmayer D, Viti F, Müller-Tiemann B, Sieger S, Friebe M, Hilger CS, Zardi L, Neri D, Dinkelborg LM (2006) Imaging of tumor angiogenesis using 99mTc-labeled human recombinant anti-ED-B fibronectin antibody fragments. J Nucl Med 47:1707–1716

    CAS  PubMed  Google Scholar 

  39. Das S, Anczuków O, Akerman M, Krainer AR (2012) Oncogenic splicing factor SRSF1 is a critical transcriptional target of MYC. Cell Rep 1:110–117. https://doi.org/10.1016/j.celrep.2011.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Urbanski LM, Leclair N, Anczuków O (2018) Alternative-splicing defects in cancer: splicing regulators and their downstream targets, guiding the way to novel cancer therapeutics. WIREs RNA 9:e1476. https://doi.org/10.1002/wrna.1476

    Article  PubMed  Google Scholar 

  41. Maraver A, Fernández-Marcos PJ, Herranz D, Muñoz-Martin M, Gomez-Lopez G, Cañamero M, Mulero F, Megías D, Sanchez-Carbayo M, Shen J, Sanchez-Cespedes M, Palomero T, Ferrando A, Serrano M (2012) Therapeutic effect of γ-secretase inhibition in KrasG12V-driven non-small cell lung carcinoma by derepression of DUSP1 and inhibition of ERK. Cancer Cell 22:222–234. https://doi.org/10.1016/j.ccr.2012.06.014

    Article  CAS  PubMed  Google Scholar 

  42. Zong FY, Fu X, Wei WJ, Luo YG, Heiner M, Cao LJ, Fang Z, Fang R, Lu D, Ji H, Hui J (2014) The RNA-binding protein QKI suppresses cancer-associated aberrant splicing. PLoS Genetics 10:e1004289. https://doi.org/10.1371/journal.pgen.1004289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bechara EG, Sebestyén E, Bernardis I, Eyras E, Valcárcel J (2013) RBM5, 6, and 10 differentially regulate NUMB alternative splicing to control cancer cell proliferation. Mol Cell 52:720–733. https://doi.org/10.1016/j.molcel.2013.11.010

    Article  CAS  PubMed  Google Scholar 

  44. Hernández J, Bechara E, Schlesinger D, Delgado J, Serrano L, Valcárcel J (2016) Tumor suppressor properties of the splicing regulatory factor RBM10. RNA Biol 13:466–472. https://doi.org/10.1080/15476286.2016.1144004

    Article  PubMed  PubMed Central  Google Scholar 

  45. Misquitta-Ali CM, Cheng E, O’Hanlon D, Liu N, McGlade CJ, Tsao MS, Blencowe BJ (2011) Global profiling and molecular characterization of alternative splicing events misregulated in lung cancer. Mol Cell Biol 31:138–150. https://doi.org/10.1128/mcb.00709-10

    Article  CAS  PubMed  Google Scholar 

  46. Liu Y, Wu BQ, Zhong HH, Tian XX, Fang WG (2012) Quantification of alternative splicing variants of human telomerase reverse transcriptase and correlations with telomerase activity in lung cancer. PLoS One 7:e38868. https://doi.org/10.1371/journal.pone.0038868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ohwada A, Takahashi H, Nagaoka I, Kira S (1994) Biliary glycoprotein mRNA expression is increased in primary lung cancer, especially in squamous cell carcinoma. Am J Respir Cell Mol Biol 11:214–220. https://doi.org/10.1165/ajrcmb.11.2.8049082

    Article  CAS  PubMed  Google Scholar 

  48. Ludlow AT, Wong MS, Robin JD, Batten K, Yuan L, Lai TP, Dahlson N, Zhang L, Mender I, Tedone E, Sayed ME, Wright WE, Shay JW (2018) NOVA1 regulates hTERT splicing and cell growth in non-small cell lung cancer. Nat Commun 9:3112. https://doi.org/10.1038/s41467-018-05582-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sayed ME, Yuan L, Robin JD, Tedone E, Batten K, Dahlson N, Wright WE, Shay JW, Ludlow AT (2019) NOVA1 directs PTBP1 to hTERT pre-mRNA and promotes telomerase activity in cancer cells. Oncogene 38:2937–2952. https://doi.org/10.1038/s41388-018-0639-8

    Article  CAS  PubMed  Google Scholar 

  50. Fujiwara M, Kamma H, Wu W, Hamasaki M, Kaneko S, Horiguchi H, Matsui-Horiguchi M, Satoh H (2004) Expression and alternative splicing pattern of human telomerase reverse transcriptase in human lung cancer cells. Int J Oncol 24:925–930

    CAS  PubMed  Google Scholar 

  51. Kang HJ, Choi YS, Hong SB, Kim KW, Woo RS, Won SJ, Kim EJ, Jeon HK, Jo SY, Kim TK, Bachoo R, Reynolds IJ, Gwag BJ, Lee HW (2004) Ectopic expression of the catalytic subunit of telomerase protects against brain injury resulting from ischemia and NMDA-induced neurotoxicity. J Neurosci 24:1280–1287. https://doi.org/10.1523/jneurosci.4082-03.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Maida Y, Yasukawa M, Furuuchi M, Lassmann T, Possemato R, Okamoto N, Kasim V, Hayashizaki Y, Hahn WC, Masutomi K (2009) An RNA-dependent RNA polymerase formed by TERT and the RMRP RNA. Nature 461:230–235. https://doi.org/10.1038/nature08283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Masutomi K, Possemato R, Wong JM, Currier JL, Tothova Z, Manola JB, Ganesan S, Lansdorp PM, Collins K, Hahn WC (2005) The telomerase reverse transcriptase regulates chromatin state and DNA damage responses. Proc Natl Acad Sci USA 102:8222–8227. https://doi.org/10.1073/pnas.0503095102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bria E, Di Modugno F, Sperduti I, Iapicca P, Visca P, Alessandrini G, Antoniani B, Pilotto S, Ludovini V, Vannucci J, Bellezza G, Sidoni A, Tortora G, Radisky DC, Crinò L, Cognetti F, Facciolo F, Mottolese M, Milella M, Nisticò P (2014) Prognostic impact of alternative splicing-derived hMENA isoforms in resected, node-negative, non-small-cell lung cancer. Oncotarget 5:11054–11063. https://doi.org/10.18632/oncotarget.2609

    Article  PubMed  PubMed Central  Google Scholar 

  55. Li S, Yang E, Shen L, Niu D, Breitzig M, Tan LC, Wu X, Huang M, Sun H, Wang F (2018) The novel truncated isoform of human manganese superoxide dismutase has a differential role in promoting metastasis of lung cancer cells. Cell Biol Int 42:1030–1040. https://doi.org/10.1002/cbin.10972

    Article  CAS  PubMed  Google Scholar 

  56. Chang HL, Lin JC (2019) SRSF1 and RBM4 differentially modulate the oncogenic effect of HIF-1α in lung cancer cells through alternative splicing mechanism. Biochim Biophys Acta Mol Cell Res 1866:118550. https://doi.org/10.1016/j.bbamcr.2019.118550

    Article  CAS  PubMed  Google Scholar 

  57. Li S, Ma J, Si Y, Cheng S, Hu M, Zhi X, Li B, Yu H, Jiang WG (2019) Differential expression and functions of Ehm2 transcript variants in lung adenocarcinoma. Int J Oncol 54:1747–1758. https://doi.org/10.3892/ijo.2019.4732

    Article  CAS  PubMed  Google Scholar 

  58. Qu S, Jiao Z, Lu G, Yao B, Wang T, Rong W, Xu J, Fan T, Sun X, Yang R, Wang J, Yao Y, Xu G, Yan X, Wang T, Liang H, Zen K (2021) PD-L1 lncRNA splice isoform promotes lung adenocarcinoma progression via enhancing c-Myc activity. Genome Biol 22:104. https://doi.org/10.1186/s13059-021-02331-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang JZ, Fu X, Fang Z, Liu H, Zong FY, Zhu H, Yu YF, Zhang XY, Wang SF, Huang Y, Hui J (2021) QKI-5 regulates the alternative splicing of cytoskeletal gene ADD3 in lung cancer. J Mol Cell Biol 13:347–360. https://doi.org/10.1093/jmcb/mjaa063

    Article  CAS  PubMed  Google Scholar 

  60. Oshika Y, Nakamura M, Tokunaga T, Ohnishi Y, Abe Y, Tsuchida T, Tomii Y, Kijima H, Yamazaki H, Ozeki Y, Tamaoki N, Ueyama Y (2000) Ribozyme approach to downregulate vascular endothelial growth factor (VEGF) 189 expression in non-small cell lung cancer (NSCLC). Eur J Cancer 36:2390–2396. https://doi.org/10.1016/s0959-8049(00)00343-9

    Article  CAS  PubMed  Google Scholar 

  61. Santimaria M, Moscatelli G, Viale GL, Giovannoni L, Neri G, Viti F, Leprini A, Borsi L, Castellani P, Zardi L, Neri D, Riva P (2003) Immunoscintigraphic detection of the ED-B domain of fibronectin, a marker of angiogenesis, in patients with cancer. Clin Cancer Res 9:571–579

    CAS  PubMed  Google Scholar 

  62. Castellani P, Viale G, Dorcaratto A, Nicolo G, Kaczmarek J, Querze G, Zardi L (1994) The fibronectin isoform containing the ED-B oncofetal domain: a marker of angiogenesis. Int J Cancer 59:612–618. https://doi.org/10.1002/ijc.2910590507

    Article  CAS  PubMed  Google Scholar 

  63. Tarli L, Balza E, Viti F, Borsi L, Castellani P, Berndorff D, Dinkelborg L, Neri D, Zardi L (1999) A high-affinity human antibody that targets tumoral blood vessels. Blood 94:192–198

    Article  CAS  PubMed  Google Scholar 

  64. Cheng KT (2004) Molecular imaging and contrast agent database (MICAD). National Center for Biotechnology Information (US), Bethesda

  65. Eisenreich A, Zakrzewicz A, Huber K, Thierbach H, Pepke W, Goldin-Lang P, Schultheiss HP, Pries A, Rauch U (2013) Regulation of pro-angiogenic tissue factor expression in hypoxia-induced human lung cancer cells. Oncol Rep 30:462–470. https://doi.org/10.3892/or.2013.2413

    Article  CAS  PubMed  Google Scholar 

  66. Shultz JC, Goehe RW, Murudkar CS, Wijesinghe DS, Mayton EK, Massiello A, Hawkins AJ, Mukerjee P, Pinkerman RL, Park MA, Chalfant CE (2011) SRSF1 regulates the alternative splicing of caspase 9 via a novel intronic splicing enhancer affecting the chemotherapeutic sensitivity of non-small cell lung cancer cells. Mol Cancer Res 9:889–900. https://doi.org/10.1158/1541-7786.Mcr-11-0061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zheng M, Niu Y, Bu J, Liang S, Zhang Z, Liu J, Guo L, Zhang Z, Wang Q (2021) ESRP1 regulates alternative splicing of CARM1 to sensitize small cell lung cancer cells to chemotherapy by inhibiting TGF-β/Smad signaling. Aging 13:3554–3572. https://doi.org/10.18632/aging.202295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Santarpia M, Daffinà MG, Karachaliou N, González-Cao M, Lazzari C, Altavilla G, Rosell R (2016) Targeted drugs in small-cell lung cancer. Transl Lung Cancer Res 5:51–70. https://doi.org/10.3978/j.issn.2218-6751.2016.01.12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mamdani H, Induru R, Jalal SI (2015) Novel therapies in small cell lung cancer. Transl Lung Cancer Res 4:533–544. https://doi.org/10.3978/j.issn.2218-6751.2015.07.20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lehman JM, Gwin ME, Massion PP (2017) Immunotherapy and targeted therapy for small cell lung cancer: there is hope. Curr Oncol Rep 19:49. https://doi.org/10.1007/s11912-017-0609-2

    Article  CAS  PubMed  Google Scholar 

  71. Brinton LT, Sloane HS, Kester M, Kelly KA (2015) Formation and role of exosomes in cancer. Cell Mol Life Sci 72:659–671. https://doi.org/10.1007/s00018-014-1764-3

    Article  CAS  PubMed  Google Scholar 

  72. Mamdani H, Ahmed S, Armstrong S, Mok T, Jalal SI (2017) Blood-based tumor biomarkers in lung cancer for detection and treatment. Transl Lung Cancer Res 6:648–660. https://doi.org/10.21037/tlcr.2017.09.03

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Vander Borght A, Duysinx M, Broers JLV, Ummelen M, Falkenberg FW, Hahnel C, van der Zeijst BAM (2018) The 180 splice variant of NCAM-containing exon 18-is specifically expressed in small cell lung cancer cells. Transl Lung Cancer Res 7:376–388. https://doi.org/10.21037/tlcr.2018.03.03

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. DiFeo A, Feld L, Rodriguez E, Wang C, Beer DG, Martignetti JA, Narla G (2008) A functional role for KLF6-SV1 in lung adenocarcinoma prognosis and chemotherapy response. Can Res 68:965–970. https://doi.org/10.1158/0008-5472.Can-07-2604

    Article  CAS  Google Scholar 

  75. Brandt AC, McNally L, Lorimer EL, Unger B, Koehn OJ, Suazo KF, Rein L, Szabo A, Tsaih SW, Distefano MD, Flister MJ, Rigo F, McNally MT, Williams CL (2020) Splice switching an oncogenic ratio of SmgGDS isoforms as a strategy to diminish malignancy. Proc Natl Acad Sci USA 117:3627–3636. https://doi.org/10.1073/pnas.1914153117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sato S, Noguchi Y, Ohara N, Uenaka A, Shimono M, Nakagawa K, Koizumi F, Ishida T, Yoshino T, Shiratori Y, Nakayama E (2007) Identification of XAGE-1 isoforms: predominant expression of XAGE-1b in testis and tumors. Cancer Immun 7:5

    PubMed  PubMed Central  Google Scholar 

  77. Sheng J, Zhao Q, Zhao J, Zhang W, Sun Y, Qin P, Lv Y, Bai L, Yang Q, Chen L, Qi Y, Zhang G, Zhang L, Gu C, Deng X, Liu H, Meng S, Gu H, Liu Q, Coulson JM, Li X, Sun B, Wang Y (2018) SRSF1 modulates PTPMT1 alternative splicing to regulate lung cancer cell radioresistance. EBioMedicine 38:113–126. https://doi.org/10.1016/j.ebiom.2018.11.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Albert BJ, McPherson PA, O’Brien K, Czaicki NL, Destefino V, Osman S, Li M, Day BW, Grabowski PJ, Moore MJ, Vogt A, Koide K (2009) Meayamycin inhibits pre-messenger RNA splicing and exhibits picomolar activity against multidrug-resistant cells. Mol Cancer Ther 8:2308–2318. https://doi.org/10.1158/1535-7163.Mct-09-0051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhu Z, Chen D, Zhang W, Zhao J, Zhi L, Huang F, Ji H, Zhang J, Liu H, Zou L, Wang Y (2018) Modulation of alternative splicing induced by paclitaxel in human lung cancer. Cell Death Dis 9:491. https://doi.org/10.1038/s41419-018-0539-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Voss OH, Arango D, Tossey JC, Villalona Calero MA, Doseff AI (2021) Splicing reprogramming of TRAIL/DISC-components sensitizes lung cancer cells to TRAIL-mediated apoptosis. Cell Death Dis 12:287. https://doi.org/10.1038/s41419-021-03567-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Arriagada R, Auperin A, Burdett S, Higgins JP, Johnson DH, Le Chevalier T, Le Pechoux C, Parmar MK, Pignon JP, Souhami RL, Stephens RJ, Stewart LA, Tierney JF, Tribodet H, van Meerbeeck J (2010) Adjuvant chemotherapy, with or without postoperative radiotherapy, in operable non-small-cell lung cancer: two meta-analyses of individual patient data. Lancet 375:1267–1277. https://doi.org/10.1016/s0140-6736(10)60059-1

    Article  CAS  PubMed  Google Scholar 

  82. Agrawal AA, Yu L, Smith PG, Buonamici S (2018) Targeting splicing abnormalities in cancer. Curr Opin Genet Dev 48:67–74. https://doi.org/10.1016/j.gde.2017.10.010

    Article  CAS  PubMed  Google Scholar 

  83. Zhang S, Bao Y, Shen X, Pan Y, Sun Y, Xiao M, Chen K, Wei H, Zuo J, Saffen D, Zong WX, Sun Y, Wang Z, Wang Y (2020) RNA binding motif protein 10 suppresses lung cancer progression by controlling alternative splicing of eukaryotic translation initiation factor 4H. EBioMedicine 61:103067. https://doi.org/10.1016/j.ebiom.2020.103067

    Article  PubMed  PubMed Central  Google Scholar 

  84. de Miguel FJ, Pajares MJ, Martínez-Terroba E, Ajona D, Morales X, Sharma RD, Pardo FJ, Rouzaut A, Rubio A, Montuenga LM, Pio R (2016) A large-scale analysis of alternative splicing reveals a key role of QKI in lung cancer. Mol Oncol 10:1437–1449. https://doi.org/10.1016/j.molonc.2016.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge useful discussions with Prof. Xiaobo Li.

Funding

This study was funded by the Inner Mongolia Science and Technology Plan Project (grant number: 2020GG0297).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: XN; methodology: JZ; validation: QG, XS; investigation: ZC, MC; data curation: ZF; writing—original draft preparation: XN and ZF; writing—review and editing: SW; visualization: SG; supervision: JZ; project administration: JL and MZ. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Minghui Zhang or Shuoshuo Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval and consent to participate

Not applicable.

Patient consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 51 KB)

Supplementary file2 (DOCX 34 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, X., Fu, Z., Zhang, J. et al. The role of alternative splicing in lung cancer. Cancer Chemother Pharmacol 92, 83–95 (2023). https://doi.org/10.1007/s00280-023-04553-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-023-04553-4

Keywords

Navigation