Skip to main content

Advertisement

Log in

Dynamic changes of CTCs in patients with metastatic HR(+)/HER2(−) breast cancer receiving salvage treatment with everolimus/exemestane

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Detection of CTCs represents a poor prognostic factor in patients with early and metastatic breast cancer (mBC) and treatment with everolimus–exemestane (E/E) is an established effective treatment in hormone receptor-positive/HER2-negative mBC patients. The effect of E/E on CTCs in mBC patients was prospectively investigated.

Methods

CTCs from 50 pre-treated patients with mBC receiving E/E were analyzed using the CellSearch (CS) platform and triple immunofluorescence (IF) staining for cytokeratin, M30 and Ki67 expression to assess their proliferative and apoptotic status.

Results

CTCs (by CS) were detected in 64% of patients before treatment and E/E administration resulted in their decreased prevalence [(n = 18; 36%, p = 0.004) and (n = 7; 19.4%, p = 0.019) post-1st and post-3rd treatment cycle, respectively] whereas it was significantly increased at disease progression (PD: 61%) compared to post-1st and post-3rd cycle (p = 0.049 and p = 0.021, respectively). Ki67-positive CTCs were detected in 60%, 60%, 17% and 50% of patients before treatment, post-1st, post-3rd cycle and at PD, respectively, while the opposite was observed for M30-positive CTCs (0% at baseline, 10% after the 1st cycle, 50% after the 3rd cycle and 0% at PD). The detection of even ≥ 1 CTC/5 ml after one cycle was associated with decreased PFS (3.3 vs 9.0 months, p = 0.025) whereas the detection of even ≥ 2 CTCs at PD was associated with decreased OS (32.4 vs 19.5 months; p = 0.009).

Conclusions

The combination of E/E resulted in early elimination of proliferating CTCs in mBC patients and this effect was associated with a favorable clinical outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Johnston SR (2015) Enhancing endocrine therapy for hormone receptor-positive advanced breast cancer: cotargeting signaling pathways. J Natl Cancer Inst. https://doi.org/10.1093/jnci/djv212

    Article  PubMed  Google Scholar 

  2. Miller TW, Balko JM, Arteaga CL (2011) Phosphatidylinositol 3-kinase and antiestrogen resistance in breast cancer. J Clin Oncol Off J Am Soc Clin Oncol 29(33):4452–4461. https://doi.org/10.1200/JCO.2010.34.4879

    Article  CAS  Google Scholar 

  3. Sabatini DM (2006) mTOR and cancer: insights into a complex relationship. Nat Rev Cancer 6(9):729–734. https://doi.org/10.1038/nrc1974

    Article  CAS  PubMed  Google Scholar 

  4. deGraffenried LA, Friedrichs WE, Russell DH, Donzis EJ, Middleton AK, Silva JM et al (2004) Inhibition of mTOR activity restores tamoxifen response in breast cancer cells with aberrant Akt Activity. Clin Cancer Res Off J Am Assoc Cancer Res 10(23):8059–8067. https://doi.org/10.1158/1078-0432.CCR-04-0035

    Article  CAS  Google Scholar 

  5. Beuvink I, Boulay A, Fumagalli S, Zilbermann F, Ruetz S, O’Reilly T et al (2005) The mTOR inhibitor RAD001 sensitizes tumor cells to DNA-damaged induced apoptosis through inhibition of p21 translation. Cell 120(6):747–759. https://doi.org/10.1016/j.cell.2004.12.040

    Article  CAS  PubMed  Google Scholar 

  6. Boulay A, Zumstein-Mecker S, Stephan C, Beuvink I, Zilbermann F, Haller R et al (2004) Antitumor efficacy of intermittent treatment schedules with the rapamycin derivative RAD001 correlates with prolonged inactivation of ribosomal protein S6 kinase 1 in peripheral blood mononuclear cells. Can Res 64(1):252–261

    Article  CAS  Google Scholar 

  7. Boulay A, Rudloff J, Ye J, Zumstein-Mecker S, O’Reilly T, Evans DB et al (2005) Dual inhibition of mTOR and estrogen receptor signaling in vitro induces cell death in models of breast cancer. Clin Cancer Res Off J Am Assoc Cancer Res 11(14):5319–5328. https://doi.org/10.1158/1078-0432.CCR-04-2402

    Article  CAS  Google Scholar 

  8. Baselga J, Campone M, Piccart M, Burris HA 3rd, Rugo HS, Sahmoud T et al (2012) Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med 366(6):520–529. https://doi.org/10.1056/NEJMoa1109653

    Article  CAS  PubMed  Google Scholar 

  9. Piccart M, Hortobagyi GN, Campone M, Pritchard KI, Lebrun F, Ito Y et al (2014) Everolimus plus exemestane for hormone-receptor-positive, human epidermal growth factor receptor-2-negative advanced breast cancer: overall survival results from BOLERO-2dagger. Ann Oncol Off J Eur Soc Med Oncol 25(12):2357–2362. https://doi.org/10.1093/annonc/mdu456

    Article  CAS  Google Scholar 

  10. Baccelli I, Schneeweiss A, Riethdorf S, Stenzinger A, Schillert A, Vogel V et al (2013) Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol 31(6):539–544. https://doi.org/10.1038/nbt.2576

    Article  CAS  PubMed  Google Scholar 

  11. Fehm T, Sagalowsky A, Clifford E, Beitsch P, Saboorian H, Euhus D et al (2002) Cytogenetic evidence that circulating epithelial cells in patients with carcinoma are malignant. Clin Cancer Res Off J Am Assoc Cancer Res 8(7):2073–2084

    CAS  Google Scholar 

  12. Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC et al (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 351(8):781–791. https://doi.org/10.1056/NEJMoa040766

    Article  CAS  PubMed  Google Scholar 

  13. Budd GT, Cristofanilli M, Ellis MJ, Stopeck A, Borden E, Miller MC et al (2006) Circulating tumor cells versus imaging–predicting overall survival in metastatic breast cancer. Clin Cancer Res Off J Am Assoc Cancer Res 12(21):6403–6409. https://doi.org/10.1158/1078-0432.CCR-05-1769

    Article  CAS  Google Scholar 

  14. Welter L, Xu L, McKinley D, Dago AE, KP R, Restrepo-Vassalli S et al (2020) Treatment response and tumor evolution: Lessons from an extended series of multi-analyte liquid biopsies in a metastatic breast cancer patient. Cold Spring Harbor molecular case studies. https://doi.org/10.1101/mcs.a005819

    Article  PubMed  PubMed Central  Google Scholar 

  15. Agelaki S, Dragolia M, Markonanolaki H, Alkahtani S, Stournaras C, Georgoulias V et al (2017) Phenotypic characterization of circulating tumor cells in triple negative breast cancer patients. Oncotarget 8(3):5309–5322. https://doi.org/10.18632/oncotarget.14144

    Article  PubMed  Google Scholar 

  16. Kallergi G, Agelaki S, Papadaki MA, Nasias D, Matikas A, Mavroudis D et al (2015) Expression of truncated human epidermal growth factor receptor 2 on circulating tumor cells of breast cancer patients. Breast Cancer Res BCR 17:113. https://doi.org/10.1186/s13058-015-0624-x

    Article  CAS  PubMed  Google Scholar 

  17. Kallergi G, Aggouraki D, Zacharopoulou N, Stournaras C, Georgoulias V, Martin SS (2018) Evaluation of alpha-tubulin, detyrosinated alpha-tubulin, and vimentin in CTCs: identification of the interaction between CTCs and blood cells through cytoskeletal elements. Breast Cancer Res BCR 20(1):67. https://doi.org/10.1186/s13058-018-0993-z

    Article  CAS  PubMed  Google Scholar 

  18. Kallergi G, Hoffmann O, Bittner AK, Papadimitriou L, Katsarou SD, Zacharopoulou N et al (2020) CXCR4 and JUNB double-positive disseminated tumor cells are detected frequently in breast cancer patients at primary diagnosis. Ther Adv Med Oncol 12:1758835919895754. https://doi.org/10.1177/1758835919895754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kallergi G, Papadaki MA, Politaki E, Mavroudis D, Georgoulias V, Agelaki S (2011) Epithelial to mesenchymal transition markers expressed in circulating tumour cells of early and metastatic breast cancer patients. Breast Cancer Res BCR 13(3):R59. https://doi.org/10.1186/bcr2896

    Article  PubMed  Google Scholar 

  20. Kallergi G, Konstantinidis G, Markomanolaki H, Papadaki MA, Mavroudis D, Stournaras C et al (2013) Apoptotic circulating tumor cells in early and metastatic breast cancer patients. Mol Cancer Ther 12(9):1886–1895. https://doi.org/10.1158/1535-7163.MCT-12-1167

    Article  CAS  PubMed  Google Scholar 

  21. Spiliotaki M, Mavroudis D, Kapranou K, Markomanolaki H, Kallergi G, Koinis F et al (2014) Evaluation of proliferation and apoptosis markers in circulating tumor cells of women with early breast cancer who are candidates for tumor dormancy. Breast Cancer Res BCR 16(6):485. https://doi.org/10.1186/s13058-014-0485-8

    Article  CAS  PubMed  Google Scholar 

  22. Deutsch TM, Riethdorf S, Nees J, Hartkopf AD, Schonfisch B, Domschke C et al (2016) Impact of apoptotic circulating tumor cells (aCTC) in metastatic breast cancer. Breast Cancer Res Treat 160(2):277–290. https://doi.org/10.1007/s10549-016-3997-3

    Article  CAS  PubMed  Google Scholar 

  23. Hartkopf AD, Wagner P, Wallwiener D, Fehm T, Rothmund R (2011) Changing levels of circulating tumor cells in monitoring chemotherapy response in patients with metastatic breast cancer. Anticancer Res 31(3):979–984

    PubMed  Google Scholar 

  24. Hayes DF, Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Miller MC et al (2006) Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin Cancer Res Off J Am Assoc Cancer Res 12(14 Pt 1):4218–4224. https://doi.org/10.1158/1078-0432.CCR-05-2821

    Article  CAS  Google Scholar 

  25. Jansson S, Bendahl PO, Larsson AM, Aaltonen KE, Ryden L (2016) Prognostic impact of circulating tumor cell apoptosis and clusters in serial blood samples from patients with metastatic breast cancer in a prospective observational cohort. BMC cancer 16:433. https://doi.org/10.1186/s12885-016-2406-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu P, Cheng H, Roberts TM, Zhao JJ (2009) Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 8(8):627–644. https://doi.org/10.1038/nrd2926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pierga JY, Hajage D, Bachelot T, Delaloge S, Brain E, Campone M et al (2012) High independent prognostic and predictive value of circulating tumor cells compared with serum tumor markers in a large prospective trial in first-line chemotherapy for metastatic breast cancer patients. Ann Oncol Off J Eur Soc Med Oncol 23(3):618–624. https://doi.org/10.1093/annonc/mdr263

    Article  Google Scholar 

  28. Smerage JB, Barlow WE, Hortobagyi GN, Winer EP, Leyland-Jones B, Srkalovic G et al (2014) Circulating tumor cells and response to chemotherapy in metastatic breast cancer: SWOG S0500. J Clin Oncol Off J Am Soc Clin Oncol 32(31):3483–3489. https://doi.org/10.1200/JCO.2014.56.2561

    Article  CAS  Google Scholar 

  29. Wallwiener M, Hartkopf AD, Baccelli I, Riethdorf S, Schott S, Pantel K et al (2013) The prognostic impact of circulating tumor cells in subtypes of metastatic breast cancer. Breast Cancer Res Treat 137(2):503–510. https://doi.org/10.1007/s10549-012-2382-0

    Article  PubMed  Google Scholar 

  30. Ignatiadis M, Rothe F, Chaboteaux C, Durbecq V, Rouas G, Criscitiello C et al (2011) HER2-positive circulating tumor cells in breast cancer. PLoS ONE 6(1):e15624. https://doi.org/10.1371/journal.pone.0015624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Klein CA, Blankenstein TJ, Schmidt-Kittler O, Petronio M, Polzer B, Stoecklein NH et al (2002) Genetic heterogeneity of single disseminated tumour cells in minimal residual cancer. Lancet 360(9334):683–689. https://doi.org/10.1016/S0140-6736(02)09838-0

    Article  CAS  PubMed  Google Scholar 

  32. Xenidis N, Perraki M, Apostolaki S, Agelaki S, Kalbakis K, Vardakis N et al (2013) Differential effect of adjuvant taxane-based and taxane-free chemotherapy regimens on the CK-19 mRNA-positive circulating tumour cells in patients with early breast cancer. Br J Cancer 108(3):549–556. https://doi.org/10.1038/bjc.2012.597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ignatiadis M, Xenidis N, Perraki M, Apostolaki S, Politaki E, Kafousi M et al (2007) Different prognostic value of cytokeratin-19 mRNA positive circulating tumor cells according to estrogen receptor and HER2 status in early-stage breast cancer. J Clin Oncol Off J Am Soc Clin Oncol 25(33):5194–5202. https://doi.org/10.1200/JCO.2007.11.7762

    Article  Google Scholar 

  34. Ignatiadis M, Kallergi G, Ntoulia M, Perraki M, Apostolaki S, Kafousi M et al (2008) Prognostic value of the molecular detection of circulating tumor cells using a multimarker reverse transcription-PCR assay for cytokeratin 19, mammaglobin A, and HER2 in early breast cancer. Clin Cancer Res Off J Am Assoc Cancer Res 14(9):2593–2600. https://doi.org/10.1158/1078-0432.CCR-07-4758

    Article  CAS  Google Scholar 

  35. Xenidis N, Ignatiadis M, Apostolaki S, Perraki M, Kalbakis K, Agelaki S et al (2009) Cytokeratin-19 mRNA-positive circulating tumor cells after adjuvant chemotherapy in patients with early breast cancer. J Clin Oncol Off J Am Soc Clin Oncol 27(13):2177–2184. https://doi.org/10.1200/JCO.2008.18.0497

    Article  CAS  Google Scholar 

  36. Saloustros E, Perraki M, Apostolaki S, Kallergi G, Xyrafas A, Kalbakis K et al (2011) Cytokeratin-19 mRNA-positive circulating tumor cells during follow-up of patients with operable breast cancer: prognostic relevance for late relapse. Breast Cancer Res BCR 13(3):R60. https://doi.org/10.1186/bcr2897

    Article  PubMed  Google Scholar 

  37. Tang D, Lahti JM, Kidd VJ (2000) Caspase-8 activation and bid cleavage contribute to MCF7 cellular execution in a caspase-3-dependent manner during staurosporine-mediated apoptosis. J Biol Chem 275(13):9303–9307

    Article  CAS  Google Scholar 

  38. Ueno T, Toi M, Linder S (2005) Detection of epithelial cell death in the body by cytokeratin 18 measurement. Biomed Pharmacother = Biomedecine & pharmacotherapie 59(Suppl 2):S359–S362

    Article  CAS  Google Scholar 

  39. Allard WJ, Matera J, Miller MC, Repollet M, Connelly MC, Rao C et al (2004) Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res Off J Am Assoc Cancer Res 10(20):6897–6904. https://doi.org/10.1158/1078-0432.CCR-04-0378

    Article  Google Scholar 

  40. Shiomi-Mouri Y, Kousaka J, Ando T, Tetsuka R, Nakano S, Yoshida M et al (2016) Clinical significance of circulating tumor cells (CTCs) with respect to optimal cut-off value and tumor markers in advanced/metastatic breast cancer. Breast Cancer 23(1):120–127. https://doi.org/10.1007/s12282-014-0539-x

    Article  PubMed  Google Scholar 

  41. Politaki E, Agelaki S, Apostolaki S, Hatzidaki D, Strati A, Koinis F et al (2017) A comparison of three methods for the detection of circulating tumor cells in patients with early and metastatic breast cancer. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 44(2):594–606. https://doi.org/10.1159/000485115

    Article  Google Scholar 

  42. Yamashita H, Toyama T, Nishio M, Ando Y, Hamaguchi M, Zhang Z et al (2006) p53 protein accumulation predicts resistance to endocrine therapy and decreased post-relapse survival in metastatic breast cancer. Breast Cancer Res BCR 8(4):R48. https://doi.org/10.1186/bcr1536

    Article  CAS  PubMed  Google Scholar 

  43. Sieuwerts AM, Kraan J, Bolt J, van der Spoel P, Elstrodt F, Schutte M et al (2009) Anti-epithelial cell adhesion molecule antibodies and the detection of circulating normal-like breast tumor cells. J Natl Cancer Inst 101(1):61–66. https://doi.org/10.1093/jnci/djn419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Aktas B, Tewes M, Fehm T, Hauch S, Kimmig R, Kasimir-Bauer S (2009) Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Res BCR 11(4):R46. https://doi.org/10.1186/bcr2333

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the Hellenic Oncology Research Group (HORG), the Hellenic Society of Medical Oncology (HeSMO) and the Cretan Association for Biomedical Research (CABR). We would like to thank Ms Vasso Athanasaki for her attentive editing of this manuscript.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study conception and design. GK and VG conceived and designed the study; MS, GK, ChN, NX, EP, SA, NG, FK, NT, DH, AK, and VG acquired, analyzed, and interpreted the data, or made key methodological contributions; MS, GK, and VG wrote the paper; VG supervised the study. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Vassilis Georgoulias.

Ethics declarations

Conflict of interest

There are no competing interests to declare.

Ethical approval

5731/11-6-02 and 4923/21-04-05.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spiliotaki, M., Kallergi, G., Nikolaou, C. et al. Dynamic changes of CTCs in patients with metastatic HR(+)/HER2(−) breast cancer receiving salvage treatment with everolimus/exemestane. Cancer Chemother Pharmacol 87, 277–287 (2021). https://doi.org/10.1007/s00280-020-04227-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-020-04227-5

Keywords

Navigation