Skip to main content

Advertisement

Log in

Identification of pharmacodynamic biomarkers and common molecular mechanisms of response to genotoxic agents in cancer cell lines

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Genotoxic agents (GAs) including cisplatin, doxorubicin, gemcitabine, and topotecan are often used in cancer treatment. However, the response to GAs is variable among patients and predictive biomarkers are inadequate to select patients for treatment. Accurate and rapid pharmacodynamics measures of response can, thus, be useful for monitoring therapy and improve clinical outcomes.

Methods

This study focuses on integrating a database of genome-wide response to treatment (The NCI Transcriptional Pharmacodynamics Workbench) with a database of baseline gene expression (GSE32474) for the NCI-60 cell lines to identify mechanisms of response and pharmacodynamic (PD) biomarkers.

Results and conclusions

Our analysis suggests that GA-induced endoplasmic reticulum (ER) stress may signal for GA-induced cell death. Reducing the uptake of GA, activating DNA repair, and blocking ER-stress induction cooperate to prevent GA-induced cell death in the GA-resistant cells. ATF3, DDIT3, CARS, and PPP1R15A appear as possible candidate PD biomarkers for monitoring the progress of GA treatment. Further validation studies on the proposed intrinsic drug-resistant mechanism and candidate genes are needed using in vivo data from either patient-derived xenograft models or clinical chemotherapy trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Moysan E, Bastiat G, Benoit JP (2013) Gemcitabine versus Modified Gemcitabine: a review of several promising chemical modifications. Mol Pharm 10(2):430–444. https://doi.org/10.1021/mp300370t

    Article  CAS  PubMed  Google Scholar 

  2. Swift LH, Golsteyn RM (2014) Genotoxic anti-cancer agents and their relationship to DNA damage, mitosis, and checkpoint adaptation in proliferating cancer cells. Int J Mol Sci 15(3):3403–3431. https://doi.org/10.3390/ijms15033403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Saunders NA, Simpson F, Thompson EW, Hill MM, Endo-Munoz L, Leggatt G, Minchin RF, Guminski A (2012) Role of intratumoural heterogeneity in cancer drug resistance: molecular and clinical perspectives. EMBO Mol Med 4(8):675–684. https://doi.org/10.1002/emmm.201101131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Turner NC, Reis-Filho JS (2012) Genetic heterogeneity and cancer drug resistance. Lancet Oncol 13(4):e178–e185. https://doi.org/10.1016/S1470-2045(11)70335-7

    Article  PubMed  Google Scholar 

  5. Eckstein N (2011) Platinum resistance in breast and ovarian cancer cell lines. J Exp Clin Cancer Res 30:91. https://doi.org/10.1186/1756-9966-30-91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cheung-Ong K, Giaever G, Nislow C (2013) DNA-damaging agents in cancer chemotherapy: serendipity and chemical biology. Chem Biol 20(5):648–659. https://doi.org/10.1016/j.chembiol.2013.04.007

    Article  CAS  PubMed  Google Scholar 

  7. Bouwman P, Jonkers J (2012) The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance. Nat Rev Cancer 12(9):587–598. https://doi.org/10.1038/nrc3342

    Article  CAS  PubMed  Google Scholar 

  8. Wilson MK, Collyar D, Chingos DT, Friedlander M, Ho TW, Karakasis K, Kaye S, Parmar MK, Sydes MR, Tannock IF, Oza AM (2015) Outcomes and endpoints in cancer trials: bridging the divide. Lancet Oncol 16(1):e43–e52. https://doi.org/10.1016/S1470-2045(14)70380-8

    Article  PubMed  Google Scholar 

  9. Mould DR, Walz AC, Lave T, Gibbs JP, Frame B (2015) Developing exposure/response models for anticancer drug treatment: special considerations. CPT Pharmacometrics Syst Pharmacol 4(1):e00016. https://doi.org/10.1002/psp4.16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Verweij J, de Jonge M, Eskens F, Sleijfer S (2012) Moving molecular targeted drug therapy towards personalized medicine: issues related to clinical trial design. Mol Oncol 6(2):196–203. https://doi.org/10.1016/j.molonc.2012.01.009

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yaghmai V, Miller FH, Rezai P, Benson AB 3rd, Salem R (2011) Response to treatment series: part 2, tumor response assessment—using new and conventional criteria. AJR Am J Roentgenol 197(1):18–27. https://doi.org/10.2214/AJR.11.6581

    Article  PubMed  Google Scholar 

  12. Mizuarai S, Irie H, Kotani H (2010) Gene expression-based pharmacodynamic biomarkers: the beginning of a new era in biomarker-driven anti-tumor drug development. Curr Mol Med 10(6):596–607

    CAS  PubMed  Google Scholar 

  13. Monks A, Zhao Y, Hose C, Hamed H, Krushkal J, Fang J, Sonkin D, Palmisano A, Polley EC, Fogli LK, Konate MM, Miller SB, Simpson MA, Voth AR, Li MC, Harris E, Wu X, Connelly JW, Rapisarda A, Teicher BA, Simon R, Doroshow JH (2018) The NCI transcriptional pharmacodynamics workbench: a tool to examine dynamic expression profiling of therapeutic response in the NCI-60 cell line panel. Cancer Res. https://doi.org/10.1158/0008-5472.can-18-0989

    Article  PubMed  Google Scholar 

  14. Liston DR, Davis M (2017) Clinically relevant concentrations of anticancer drugs: a guide for nonclinical studies. Clin Cancer Res 23(14):3489–3498. https://doi.org/10.1158/1078-0432.CCR-16-3083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pfister TD, Reinhold WC, Agama K, Gupta S, Khin SA, Kinders RJ, Parchment RE, Tomaszewski JE, Doroshow JH, Pommier Y (2009) Topoisomerase I levels in the NCI-60 cancer cell line panel determined by validated ELISA and microarray analysis and correlation with indenoisoquinoline sensitivity. Mol Cancer Ther 8(7):1878–1884. https://doi.org/10.1158/1535-7163.MCT-09-0016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Choy MS, Chen MJ, Manikandan J, Peng ZF, Jenner AM, Melendez AJ, Cheung NS (2011) Up-regulation of endoplasmic reticulum stress-related genes during the early phase of treatment of cultured cortical neurons by the proteasomal inhibitor lactacystin. J Cell Physiol 226(2):494–510. https://doi.org/10.1002/jcp.22359

    Article  CAS  PubMed  Google Scholar 

  17. Dixon SJ, Patel DN, Welsch M, Skouta R, Lee ED, Hayano M, Thomas AG, Gleason CE, Tatonetti NP, Slusher BS, Stockwell BR (2014) Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. Elife 3:e02523. https://doi.org/10.7554/eLife.02523

    Article  PubMed  PubMed Central  Google Scholar 

  18. Han J, Back SH, Hur J, Lin YH, Gildersleeve R, Shan J, Yuan CL, Krokowski D, Wang S, Hatzoglou M, Kilberg MS, Sartor MA, Kaufman RJ (2013) ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat Cell Biol 15(5):481–490. https://doi.org/10.1038/ncb2738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huggins CJ, Mayekar MK, Martin N, Saylor KL, Gonit M, Jailwala P, Kasoji M, Haines DC, Quinones OA, Johnson PF (2015) C/EBPgamma is a critical regulator of cellular stress response networks through heterodimerization with ATF4. Mol Cell Biol 36(5):693–713. https://doi.org/10.1128/mcb.00911-15

    Article  PubMed  Google Scholar 

  20. Lippert TH, Ruoff HJ, Volm M (2011) Current status of methods to assess cancer drug resistance. Int J Med Sci 8(3):245–253

    Article  Google Scholar 

  21. Deli MA (2009) Potential use of tight junction modulators to reversibly open membranous barriers and improve drug delivery. Biochim Biophys Acta 1788(4):892–910. https://doi.org/10.1016/j.bbamem.2008.09.016

    Article  CAS  PubMed  Google Scholar 

  22. Kohn KW, Zeeberg BM, Reinhold WC, Pommier Y (2014) Gene expression correlations in human cancer cell lines define molecular interaction networks for epithelial phenotype. PLoS One 9(6):e99269. https://doi.org/10.1371/journal.pone.0099269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bai P (2015) Biology of poly(ADP-Ribose) polymerases: the factotums of cell maintenance. Mol Cell 58(6):947–958. https://doi.org/10.1016/j.molcel.2015.01.034

    Article  CAS  PubMed  Google Scholar 

  24. Frankum J, Moudry P, Brough R, Hodny Z, Ashworth A, Bartek J, Lord CJ (2015) Complementary genetic screens identify the E3 ubiquitin ligase CBLC, as a modifier of PARP inhibitor sensitivity. Oncotarget 6(13):10746–10758. https://doi.org/10.18632/oncotarget.3628

    Article  PubMed  PubMed Central  Google Scholar 

  25. Andersen SD, Keijzers G, Rampakakis E, Engels K, Luhn P, El-Shemerly M, Nielsen FC, Du Y, May A, Bohr VA, Ferrari S, Zannis-Hadjopoulos M, Fu H, Rasmussen LJ (2012) 14-3-3 checkpoint regulatory proteins interact specifically with DNA repair protein human exonuclease 1 (hEXO1) via a semi-conserved motif. DNA Repair (Amst) 11(3):267–277. https://doi.org/10.1016/j.dnarep.2011.11.007

    Article  CAS  Google Scholar 

  26. Bergin E, Levine JS, Koh JS, Lieberthal W (2000) Mouse proximal tubular cell-cell adhesion inhibits apoptosis by a cadherin-dependent mechanism. Am J Physiol Renal Physiol 278(5):F758–F768. https://doi.org/10.1152/ajprenal.2000.278.5.F758

    Article  CAS  PubMed  Google Scholar 

  27. Ni J, Cozzi P, Hao J, Beretov J, Chang L, Duan W, Shigdar S, Delprado W, Graham P, Bucci J, Kearsley J, Li Y (2013) Epithelial cell adhesion molecule (EpCAM) is associated with prostate cancer metastasis and chemo/radioresistance via the PI3K/Akt/mTOR signaling pathway. Int J Biochem Cell Biol 45(12):2736–2748. https://doi.org/10.1016/j.biocel.2013.09.008

    Article  CAS  PubMed  Google Scholar 

  28. Wang G, Ma N, Meng L, Wei Y, Gui J (2015) Activation of the phosphatidylinositol 3-kinase/Akt pathway is involved in lipocalin-2-promoted human pulmonary artery smooth muscle cell proliferation. Mol Cell Biochem 410(1–2):207–213. https://doi.org/10.1007/s11010-015-2553-5

    Article  CAS  PubMed  Google Scholar 

  29. Weng CC, Kuo KK, Su HT, Hsiao PJ, Chen YW, Wu DC, Hung WC, Cheng KH (2016) Pancreatic tumor progression associated with CD133 overexpression: involvement of increased TERT expression and epidermal growth factor receptor-dependent Akt activation. Pancreas 45(3):443–457. https://doi.org/10.1097/MPA.0000000000000460

    Article  CAS  PubMed  Google Scholar 

  30. Zoratti GL, Tanabe LM, Varela FA, Murray AS, Bergum C, Colombo E, Lang JE, Molinolo AA, Leduc R, Marsault E, Boerner J, List K (2015) Targeting matriptase in breast cancer abrogates tumour progression via impairment of stromal-epithelial growth factor signalling. Nat Commun 6:6776. https://doi.org/10.1038/ncomms7776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yao HP, Zhou YQ, Zhang R, Wang MH (2013) MSP-RON signalling in cancer: pathogenesis and therapeutic potential. Nat Rev Cancer 13(7):466–481. https://doi.org/10.1038/nrc3545

    Article  CAS  PubMed  Google Scholar 

  32. Chang HY, Chang TC, Huang WY, Lee CT, Yen CJ, Tsai YS, Tzai TS, Chen SH, Chow NH (2016) RON nuclear translocation under hypoxia potentiates chemoresistance to DNA double-strand break-inducing anticancer drugs. Mol Cancer Ther 15(2):276–286. https://doi.org/10.1158/1535-7163.MCT-15-0311

    Article  CAS  PubMed  Google Scholar 

  33. Vandecaetsbeek I, Vangheluwe P, Raeymaekers L, Wuytack F, Vanoevelen J (2011) The Ca2+ pumps of the endoplasmic reticulum and Golgi apparatus. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a004184

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhao F, Edwards R, Dizon D, Afrasiabi K, Mastroianni JR, Geyfman M, Ouellette AJ, Andersen B, Lipkin SM (2010) Disruption of Paneth and goblet cell homeostasis and increased endoplasmic reticulum stress in Agr2−/− mice. Dev Biol 338(2):270–279. https://doi.org/10.1016/j.ydbio.2009.12.008

    Article  CAS  PubMed  Google Scholar 

  35. Kawaguchi M, Takeda N, Hoshiko S, Yorita K, Baba T, Sawaguchi A, Nezu Y, Yoshikawa T, Fukushima T, Kataoka H (2011) Membrane-bound serine protease inhibitor HAI-1 is required for maintenance of intestinal epithelial integrity. Am J Pathol 179(4):1815–1826. https://doi.org/10.1016/j.ajpath.2011.06.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang R, Shi H, Ren F, Li X, Zhang M, Feng W, Jia Y (2016) Knockdown of MACC1 expression increases cisplatin sensitivity in cisplatin-resistant epithelial ovarian cancer cells. Oncol Rep 35(4):2466–2472. https://doi.org/10.3892/or.2016.4585

    Article  CAS  PubMed  Google Scholar 

  37. Pan J, Li X, Wu W, Xue M, Hou H, Zhai W, Chen W (2016) Long non-coding RNA UCA1 promotes cisplatin/gemcitabine resistance through CREB modulating miR-196a-5p in bladder cancer cells. Cancer Lett 382(1):64–76. https://doi.org/10.1016/j.canlet.2016.08.015

    Article  CAS  PubMed  Google Scholar 

  38. Hosoya N, Miyagawa K (2014) Targeting DNA damage response in cancer therapy. Cancer Sci 105(4):370–388. https://doi.org/10.1111/cas.12366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Avril T, Vauleon E, Chevet E (2017) Endoplasmic reticulum stress signaling and chemotherapy resistance in solid cancers. Oncogenesis 6(8):e373. https://doi.org/10.1038/oncsis.2017.72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Leroy B, Girard L, Hollestelle A, Minna JD, Gazdar AF, Soussi T (2014) Analysis of TP53 mutation status in human cancer cell lines: a reassessment. Hum Mutat 35(6):756–765. https://doi.org/10.1002/humu.22556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rasti M, Azimi T (2015) TP53 Binding to BRCA1 and RAD51 in MCF7 and MDA-MB-468 Breast Cancer Cell Lines In vivo and In vitro. Avicenna J Med Biotechnol 7(2):76–79

    PubMed  PubMed Central  Google Scholar 

  42. Sousa FG, Matuo R, Tang SW, Rajapakse VN, Luna A, Sander C, Varma S, Simon PH, Doroshow JH, Reinhold WC, Pommier Y (2015) Alterations of DNA repair genes in the NCI-60 cell lines and their predictive value for anticancer drug activity. DNA Repair (Amst) 28:107–115. https://doi.org/10.1016/j.dnarep.2015.01.011

    Article  CAS  Google Scholar 

  43. Verfaillie T, Salazar M, Velasco G, Agostinis P (2010) Linking ER stress to autophagy: potential implications for cancer therapy. Int J Cell Biol 2010:930509. https://doi.org/10.1155/2010/930509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13(2):89–102. https://doi.org/10.1038/nrm3270

    Article  CAS  PubMed  Google Scholar 

  45. Shapiro DJ, Livezey M, Yu L, Zheng X, Andruska N (2016) Anticipatory UPR activation: a protective pathway and target in cancer. Trends Endocrinol Metab 27(10):731–741. https://doi.org/10.1016/j.tem.2016.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tabas I, Ron D (2011) Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 13(3):184–190. https://doi.org/10.1038/ncb0311-184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Urra H, Dufey E, Lisbona F, Rojas-Rivera D (1833) Hetz C (2013) When ER stress reaches a dead end. Biochim Biophys Acta 12:3507–3517. https://doi.org/10.1016/j.bbamcr.2013.07.024

    Article  CAS  Google Scholar 

  48. Mann MJ, Hendershot LM (2006) UPR activation alters chemosensitivity of tumor cells. Cancer Biol Ther 5(7):736–740

    Article  CAS  Google Scholar 

  49. McCullough KD, Martindale JL, Klotz LO, Aw TY, Holbrook NJ (2001) Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 21(4):1249–1259. https://doi.org/10.1128/MCB.21.4.1249-1259.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Piton N, Wason J, Colasse E, Cornic M, Lemoine F, Le Pessot F, Marguet F, Sabourin JC (2016) Endoplasmic reticulum stress, unfolded protein response and development of colon adenocarcinoma. Virchows Arch 469(2):145–154. https://doi.org/10.1007/s00428-016-1961-6

    Article  CAS  PubMed  Google Scholar 

  51. Gao J, Yan Q, Liu S, Yang X (2014) Knockdown of EpCAM enhances the chemosensitivity of breast cancer cells to 5-fluorouracil by downregulating the antiapoptotic factor Bcl-2. PLoS One 9(7):e102590. https://doi.org/10.1371/journal.pone.0102590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liao MY, Lai JK, Kuo MY, Lu RM, Lin CW, Cheng PC, Liang KH, Wu HC (2015) An anti-EpCAM antibody EpAb2-6 for the treatment of colon cancer. Oncotarget 6(28):24947–24968. https://doi.org/10.18632/oncotarget.4453

    Article  PubMed  PubMed Central  Google Scholar 

  53. Fischer KR, Durrans A, Lee S, Sheng J, Li F, Wong ST, Choi H, El Rayes T, Ryu S, Troeger J, Schwabe RF, Vahdat LT, Altorki NK, Mittal V, Gao D (2015) Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature 527(7579):472–476. https://doi.org/10.1038/nature15748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zheng X, Carstens JL, Kim J, Scheible M, Kaye J, Sugimoto H, Wu CC, LeBleu VS, Kalluri R (2015) Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature 527(7579):525–530. https://doi.org/10.1038/nature16064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zeindl-Eberhart E, Brandl L, Liebmann S, Ormanns S, Scheel SK, Brabletz T, Kirchner T, Jung A (2014) Epithelial-mesenchymal transition induces endoplasmic-reticulum-stress response in human colorectal tumor cells. PLoS One 9(1):e87386. https://doi.org/10.1371/journal.pone.0087386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kwon MJ (2013) Emerging roles of claudins in human cancer. Int J Mol Sci 14(9):18148–18180. https://doi.org/10.3390/ijms140918148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Luo CW, Wu CC, Chang SJ, Chang TM, Chen TY, Chai CY, Chang CL, Hou MF, Pan MR (2018) CHD4-mediated loss of E-cadherin determines metastatic ability in triple-negative breast cancer cells. Exp Cell Res 363(1):65–72. https://doi.org/10.1016/j.yexcr.2017.12.032

    Article  CAS  PubMed  Google Scholar 

  58. Fortier AM, Asselin E, Cadrin M (2013) Keratin 8 and 18 loss in epithelial cancer cells increases collective cell migration and cisplatin sensitivity through claudin1 up-regulation. J Biol Chem 288(16):11555–11571. https://doi.org/10.1074/jbc.M112.428920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jung H, Kim B, Moon BI, Oh E-S (2016) Cytokeratin 18 is necessary for initiation of TGF-β1-induced epithelial–mesenchymal transition in breast epithelial cells. Mol Cell Biochem 423(1–2):21–28

    Article  CAS  Google Scholar 

  60. Prislei S, Mariani M, Raspaglio G, Mozzetti S, Filippetti F, Ferrandina G, Scambia G, Ferlini C (2010) RON and cisplatin resistance in ovarian cancer cell lines. Oncol Res 19(1):13–22

    Article  CAS  Google Scholar 

  61. Logan-Collins J, Thomas RM, Yu P, Jaquish D, Mose E, French R, Stuart W, McClaine R, Aronow B, Hoffman RM, Waltz SE, Lowy AM (2010) Silencing of RON receptor signaling promotes apoptosis and gemcitabine sensitivity in pancreatic cancers. Cancer Res 70(3):1130–1140. https://doi.org/10.1158/0008-5472.CAN-09-0761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Perathoner A, Pirkebner D, Brandacher G, Spizzo G, Stadlmann S, Obrist P, Margreiter R, Amberger A (2005) 14-3-3sigma expression is an independent prognostic parameter for poor survival in colorectal carcinoma patients. Clin Cancer Res 11(9):3274–3279. https://doi.org/10.1158/1078-0432.CCR-04-2207

    Article  CAS  PubMed  Google Scholar 

  63. Fan Y, Shen B, Tan M, Mu X, Qin Y, Zhang F, Liu Y (2014) Long non-coding RNA UCA1 increases chemoresistance of bladder cancer cells by regulating Wnt signaling. FEBS J 281(7):1750–1758. https://doi.org/10.1111/febs.12737

    Article  CAS  PubMed  Google Scholar 

  64. Yamazaki T, Sasaki N, Nishi M, Takeshima H (2010) Facilitation of DNA damage-induced apoptosis by endoplasmic reticulum protein mitsugumin23. Biochem Biophys Res Commun 392(2):196–200. https://doi.org/10.1016/j.bbrc.2010.01.013

    Article  CAS  PubMed  Google Scholar 

  65. Yamamori T, Meike S, Nagane M, Yasui H, Inanami O (2013) ER stress suppresses DNA double-strand break repair and sensitizes tumor cells to ionizing radiation by stimulating proteasomal degradation of Rad51. FEBS Lett 587(20):3348–3353. https://doi.org/10.1016/j.febslet.2013.08.030

    Article  CAS  PubMed  Google Scholar 

  66. Dicks N, Gutierrez K, Michalak M, Bordignon V, Agellon LB (2015) Endoplasmic reticulum stress, genome damage, and cancer. Front Oncol 5:11. https://doi.org/10.3389/fonc.2015.00011

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Julia Krushkal for reading the manuscript and for providing helpful feedback.

Funding

This project has been funded in whole or in part with federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. Simon.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Min, DJ., Zhao, Y., Monks, A. et al. Identification of pharmacodynamic biomarkers and common molecular mechanisms of response to genotoxic agents in cancer cell lines. Cancer Chemother Pharmacol 84, 771–780 (2019). https://doi.org/10.1007/s00280-019-03898-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-019-03898-z

Keywords

Navigation