Skip to main content

Advertisement

Log in

TrkB inhibition by GNF-4256 slows growth and enhances chemotherapeutic efficacy in neuroblastoma xenografts

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Neuroblastoma (NB) is one of the most common and deadly pediatric solid tumors. NB is characterized by clinical heterogeneity, from spontaneous regression to relentless progression despite intensive multimodality therapy. There is compelling evidence that members of the tropomyosin receptor kinase (Trk) family play important roles in these disparate clinical behaviors. Indeed, TrkB and its ligand, brain-derived neurotrophic factor (BDNF), are expressed in 50–60 % of high-risk NBs. The BDNF/TrkB autocrine pathway enhances survival, invasion, metastasis, angiogenesis and drug resistance.

Methods

We tested a novel pan-Trk inhibitor, GNF-4256 (Genomics Institute of the Novartis Research Foundation), in vitro and in vivo in a nu/nu athymic xenograft mouse model to determine its efficacy in inhibiting the growth of TrkB-expressing human NB cells (SY5Y-TrkB). Additionally, we assessed the ability of GNF-4256 to enhance NB cell growth inhibition in vitro and in vivo, when combined with conventional chemotherapeutic agents, irinotecan and temozolomide (Irino–TMZ).

Results

GNF-4256 inhibits TrkB phosphorylation and the in vitro growth of TrkB-expressing NBs in a dose-dependent manner, with an IC50 around 7 and 50 nM, respectively. Furthermore, GNF-4256 inhibits the growth of NB xenografts as a single agent (p < 0.0001 for mice treated at 40 or 100 mg/kg BID, compared to controls), and it significantly enhances the antitumor efficacy of irinotecan plus temozolomide (Irino–TMZ, p < 0.0071 compared to Irino–TMZ alone).

Conclusions

Our data suggest that GNF-4256 is a potent and specific Trk inhibitor capable of significantly slowing SY5Y-TrkB growth, both in vitro and in vivo. More importantly, the addition of GNF-4256 significantly enhanced the antitumor efficacy of Irino–TMZ, as measured by in vitro and in vivo growth inhibition and increased event-free survival in a mouse xenograft model, without additional toxicity. These data strongly suggest that inhibition of TrkB with GNF-4256 can enhance the efficacy of current chemotherapeutic treatment for recurrent/refractory high-risk NBs with minimal or no additional toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BDNF:

Brain-derived neurotrophic factor

Irino:

Irinotecan

NGF:

Nerve growth factor

NB:

Neuroblastoma

RT-CES:

Real-time cell electrical sensing

SRB:

Sulphorhodamine B

TMZ:

Temozolomide

Trk:

Tropomyosin receptor kinase

References

  1. Brodeur GM (2003) Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 3(3):203–216

    Article  CAS  PubMed  Google Scholar 

  2. Brodeur GM, Iyer R, Croucher JL, Zhuang T, Higashi M, Kolla V (2014) Therapeutic targets for neuroblastomas. Expert Opin Ther Targets 18(3):277–292

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Maris JM, Hogarty MD, Bagatell R, Cohn SL (2007) Neuroblastoma. Lancet 369(9579):2106–2120

    Article  CAS  PubMed  Google Scholar 

  4. Brodeur GM, Minturn JE, Ho R, Simpson AM, Iyer R, Varela CR et al (2009) Trk receptor expression and inhibition in neuroblastomas. Clin Cancer Res 15(10):3244–3250

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Thiele CJ, Li Z, McKee AE (2009) On Trk—the TrkB signal transduction pathway is an increasingly important target in cancer biology. Clin Cancer Res 15(19):5962–5967

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Nakagawara A (2001) Trk receptor tyrosine kinases: a bridge between cancer and neural development. Cancer Lett 169(2):107–114

    Article  CAS  PubMed  Google Scholar 

  7. Brodeur GM, Nakagawara A, Yamashiro DJ, Ikegaki N, Liu XG, Azar CG et al (1997) Expression of TrkA, TrkB and TrkC in human neuroblastomas. J Neurooncol 31(1–2):49–55

    Article  CAS  PubMed  Google Scholar 

  8. Kogner P, Barbany G, Dominici C, Castello MA, Raschella G, Persson H (1993) Coexpression of messenger RNA for TRK protooncogene and low affinity nerve growth factor receptor in neuroblastoma with favorable prognosis. Cancer Res 53(9):2044–2050

    CAS  PubMed  Google Scholar 

  9. Nakagawara A, Arima M, Azar CG, Scavarda NJ, Brodeur GM (1992) Inverse relationship between trk expression and N-myc amplification in human neuroblastomas. Cancer Res 52(5):1364–1368

    CAS  PubMed  Google Scholar 

  10. Nakagawara A, Arima-Nakagawara M, Scavarda NJ, Azar CG, Cantor AB, Brodeur GM (1993) Association between high levels of expression of the TRK gene and favorable outcome in human neuroblastoma. N Engl J Med 328(12):847–854

    Article  CAS  PubMed  Google Scholar 

  11. Nakagawara A, Brodeur GM (1997) Role of neurotrophins and their receptors in human neuroblastomas: a primary culture study. Eur J Cancer 33(12):2050–2053

    Article  CAS  PubMed  Google Scholar 

  12. Suzuki T, Bogenmann E, Shimada H, Stram D, Seeger RC (1993) Lack of high-affinity nerve growth factor receptors in aggressive neuroblastomas. J Natl Cancer Inst 85(5):377–384

    Article  CAS  PubMed  Google Scholar 

  13. Acheson A, Conover JC, Fandl JP, DeChiara TM, Russell M, Thadani A et al (1995) A BDNF autocrine loop in adult sensory neurons prevents cell death. Nature 374(6521):450–453 see comments

    Article  CAS  PubMed  Google Scholar 

  14. Ho R, Eggert A, Hishiki T, Minturn JE, Ikegaki N, Foster P et al (2002) Resistance to chemotherapy mediated by TrkB in neuroblastomas. Cancer Res 62(22):6462–6466

    CAS  PubMed  Google Scholar 

  15. Jaboin J, Hong A, Kim CJ, Thiele CJ (2003) Cisplatin-induced cytotoxicity is blocked by brain-derived neurotrophic factor activation of TrkB signal transduction path in neuroblastoma. Cancer Lett 193(1):109–114

    Article  CAS  PubMed  Google Scholar 

  16. Jaboin J, Kim CJ, Kaplan DR, Thiele CJ (2002) Brain-derived neurotrophic factor activation of TrkB protects neuroblastoma cells from chemotherapy-induced apoptosis via phosphatidylinositol 3′-kinase pathway. Cancer Res 62(22):6756–6763

    CAS  PubMed  Google Scholar 

  17. Matsumoto K, Wada RK, Yamashiro JM, Kaplan DR, Thiele CJ (1995) Expression of brain-derived neurotrophic factor and p145TrkB affects survival, differentiation, and invasiveness of human neuroblastoma cells. Cancer Res 55(8):1798–1806

    CAS  PubMed  Google Scholar 

  18. Nakagawara A, Azar CG, Scavarda NJ, Brodeur GM (1994) Expression and function of TRK-B and BDNF in human neuroblastomas. Mol Cell Biol 14(1):759–767

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Nakamura K, Martin KC, Jackson JK, Beppu K, Woo CW, Thiele CJ (2006) Brain-derived neurotrophic factor activation of TrkB induces vascular endothelial growth factor expression via hypoxia-inducible factor-1alpha in neuroblastoma cells. Cancer Res 66(8):4249–4255

    Article  CAS  PubMed  Google Scholar 

  20. Evans AE, Kisselbach KD, Liu X, Eggert A, Ikegaki N, Camoratto AM et al (2001) Effect of CEP-751 (KT-6587) on neuroblastoma xenografts expressing TrkB. Med Pediatr Oncol 36(1):181–184

    Article  CAS  PubMed  Google Scholar 

  21. Evans AE, Kisselbach KD, Yamashiro DJ, Ikegaki N, Camoratto AM, Dionne CA et al (1999) Antitumor activity of CEP-751 (KT-6587) on human neuroblastoma and medulloblastoma xenografts. Clin Cancer Res 5(11):3594–3602

    CAS  PubMed  Google Scholar 

  22. Iyer R, Evans AE, Qi X, Ho R, Minturn JE, Zhao H et al (2010) Lestaurtinib enhances the antitumor efficacy of chemotherapy in murine xenograft models of neuroblastoma. Clin Cancer Res 16(5):1478–1485

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Minturn JE, Evans AE, Villablanca JG, Yanik GA, Park JR, Shusterman S et al (2011) Phase I trial of lestaurtinib for children with refractory neuroblastoma: a new approaches to neuroblastoma therapy consortium study. Cancer Chemother Pharmacol 68(4):1057–1065

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Iyer R, Varela CR, Minturn JE, Ho R, Simpson AM, Light JE et al (2012) AZ64 Inhibits TrkB and enhances the efficacy of chemotherapy and local radiation in neuroblastoma xenografts. Cancer Chemother Pharmacol (in press)

  25. Thress K, Macintyre T, Wang H, Whitston D, Liu ZY, Hoffmann E et al (2009) Identification and preclinical characterization of AZ-23, a novel, selective, and orally bioavailable inhibitor of the Trk kinase pathway. Mol Cancer Ther 8(7):1818–1827

    Article  CAS  PubMed  Google Scholar 

  26. Zage PE, Graham TC, Zeng L, Fang W, Pien C, Thress K et al (2011) The selective Trk inhibitor AZ623 inhibits brain-derived neurotrophic factor-mediated neuroblastoma cell proliferation and signaling and is synergistic with topotecan. Cancer 117(6):1321–1391

    Article  CAS  PubMed  Google Scholar 

  27. Blackwell LJ, Birkos S, Hallam R, Van De Carr G, Arroway J, Suto CM et al (2009) High-throughput screening of the cyclic AMP-dependent protein kinase (PKA) using the caliper microfluidic platform. Methods Mol Biol 565:225–237

    Article  CAS  PubMed  Google Scholar 

  28. Thompson J, Zamboni WC, Cheshire PJ, Richmond L, Luo X, Houghton JA et al (1997) Efficacy of oral irinotecan against neuroblastoma xenografts. Anticancer Drugs 8(4):313–322

    Article  CAS  PubMed  Google Scholar 

  29. Stewart CF, Zamboni WC, Crom WR, Houghton PJ (1997) Disposition of irinotecan and SN-38 following oral and intravenous irinotecan dosing in mice. Cancer Chemother Pharmacol 40(3):259–265

    Article  CAS  PubMed  Google Scholar 

  30. Greco A, Mariani C, Miranda C, Pagliardini S, Pierotti MA (1993) Characterization of the NTRK1 genomic region involved in chromosomal rearrangements generating TRK oncogenes. Genomics 18(2):397–400

    Article  CAS  PubMed  Google Scholar 

  31. Greco A, Miranda C, Pagliardini S, Fusetti L, Bongarzone I, Pierotti MA (1997) Chromosome 1 rearrangements involving the genes TPR and NTRK1 produce structurally different thyroid-specific TRK oncogenes. Genes Chromosomes Cancer 19(2):112–123

    Article  CAS  PubMed  Google Scholar 

  32. Greco A, Roccato E, Pierotti MA (2004) TRK oncogenes in papillary thyroid carcinoma. Cancer Treat Res 122:207–219

    Article  PubMed  Google Scholar 

  33. Pierotti MA, Bongarzone I, Borrello MG, Mariani C, Miranda C, Sozzi G et al (1995) Rearrangements of TRK proto-oncogene in papillary thyroid carcinomas. J Endocrinol Invest 18(2):130–133

    Article  CAS  PubMed  Google Scholar 

  34. Vaishnavi A, Capelletti M, Le AT, Kako S, Butaney M, Ercan D et al (2013) Oncogenic and drug-sensitive NTRK1 rearrangements in lung cancer. Nat Med 19(11):1469–1472

    Article  CAS  PubMed  Google Scholar 

  35. Davidson B, Reich R, Lazarovici P, Ann Florenes V, Nielsen S, Nesland JM (2004) Altered expression and activation of the nerve growth factor receptors TrkA and p75 provide the first evidence of tumor progression to effusion in breast carcinoma. Breast Cancer Res Treat 83(2):119–128

    Article  CAS  PubMed  Google Scholar 

  36. Descamps S, Lebourhis X, Delehedde M, Boilly B, Hondermarck H (1998) Nerve growth factor is mitogenic for cancerous but not normal human breast epithelial cells. J Biol Chem 273(27):16659–16662

    Article  CAS  PubMed  Google Scholar 

  37. Descamps S, Pawlowski V, Revillion F, Hornez L, Hebbar M, Boilly B et al (2001) Expression of nerve growth factor receptors and their prognostic value in human breast cancer. Cancer Res 61(11):4337–4340

    CAS  PubMed  Google Scholar 

  38. Dolle L, Adriaenssens E, El Yazidi-Belkoura I, Le Bourhis X, Nurcombe V, Hondermarck H (2004) Nerve growth factor receptors and signaling in breast cancer. Curr Cancer Drug Targets 4(6):463–470

    Article  CAS  PubMed  Google Scholar 

  39. Dolle L, El Yazidi-Belkoura I, Adriaenssens E, Nurcombe V, Hondermarck H (2003) Nerve growth factor overexpression and autocrine loop in breast cancer cells. Oncogene 22(36):5592–5601

    Article  CAS  PubMed  Google Scholar 

  40. Jin W, Kim GM, Kim MS, Lim MH, Yun C, Jeong J et al (2010) TrkC plays an essential role in breast tumor growth and metastasis. Carcinogenesis 31(11):1939–1947

    Article  CAS  PubMed  Google Scholar 

  41. Lagadec C, Meignan S, Adriaenssens E, Foveau B, Vanhecke E, Romon R et al (2009) TrkA overexpression enhances growth and metastasis of breast cancer cells. Oncogene 28(18):1960–1970

    Article  CAS  PubMed  Google Scholar 

  42. George DJ, Suzuki H, Bova GS, Isaacs JT (1998) Mutational analysis of the TrkA gene in prostate cancer. Prostate 36(3):172–180

    Article  CAS  PubMed  Google Scholar 

  43. MacGrogan D, Saint-Andre JP, Dicou E (1992) Expression of nerve growth factor and nerve growth factor receptor genes in human tissues and in prostatic adenocarcinoma cell lines. J Neurochem 59(4):1381–1391

    Article  CAS  PubMed  Google Scholar 

  44. Pflug BR, Dionne C, Kaplan DR, Lynch J, Djakiew D (1995) Expression of a Trk high affinity nerve growth factor receptor in the human prostate. Endocrinology 136(1):262–268

    CAS  PubMed  Google Scholar 

  45. Walch ET, Marchetti D (1999) Role of neurotrophins and neurotrophins receptors in the in vitro invasion and heparanase production of human prostate cancer cells. Clin Exp Metastasis 17(4):307–314

    Article  CAS  PubMed  Google Scholar 

  46. Weeraratna AT, Arnold JT, George DJ, DeMarzo A, Isaacs JT (2000) Rational basis for Trk inhibition therapy for prostate cancer. Prostate 45(2):140–148

    Article  CAS  PubMed  Google Scholar 

  47. Miknyoczki SJ, Wan W, Chang H, Dobrzanski P, Ruggeri BA, Dionne CA et al (2002) The neurotrophin-trk receptor axes are critical for the growth and progression of human prostatic carcinoma and pancreatic ductal adenocarcinoma xenografts in nude mice. Clin Cancer Res 8(6):1924–1931

    CAS  PubMed  Google Scholar 

  48. Miknyoczki SJ, Chang H, Klein-Szanto A, Dionne CA, Ruggeri BA (1999) The Trk tyrosine kinase inhibitor CEP-701 (KT-5555) exhibits significant antitumor efficacy in preclinical xenograft models of human pancreatic ductal adenocarcinoma. Clin Cancer Res 5(8):2205–2212

    CAS  PubMed  Google Scholar 

  49. Miknyoczki SJ, Dionne CA, Klein-Szanto AJ, Ruggeri BA (1999) The novel Trk receptor tyrosine kinase inhibitor CEP-701 (KT-5555) exhibits antitumor efficacy against human pancreatic carcinoma (Panc1) xenograft growth and in vivo invasiveness. Ann N Y Acad Sci 880:252–262

    Article  CAS  PubMed  Google Scholar 

  50. Miknyoczki SJ, Lang D, Huang L, Klein-Szanto AJ, Dionne CA, Ruggeri BA (1999) Neurotrophins and Trk receptors in human pancreatic ductal adenocarcinoma: expression patterns and effects on in vitro invasive behavior. Int J Cancer 81(3):417–427

    Article  CAS  PubMed  Google Scholar 

  51. Sakamoto Y, Kitajima Y, Edakuni G, Sasatomi E, Mori M, Kitahara K et al (2001) Expression of Trk tyrosine kinase receptor is a biologic marker for cell proliferation and perineural invasion of human pancreatic ductal adenocarcinoma. Oncol Rep 8(3):477–484

    CAS  PubMed  Google Scholar 

  52. Euhus DM, Timmons CF, Tomlinson GE (2002) ETV6-NTRK3—Trk-ing the primary event in human secretory breast cancer. Cancer Cell 2(5):347–348

    Article  CAS  PubMed  Google Scholar 

  53. Makretsov N, He M, Hayes M, Chia S, Horsman DE, Sorensen PH et al (2004) A fluorescence in situ hybridization study of ETV6-NTRK3 fusion gene in secretory breast carcinoma. Genes Chromosom Cancer 40(2):152–157

    Article  CAS  PubMed  Google Scholar 

  54. Tognon C, Knezevich SR, Huntsman D, Roskelley CD, Melnyk N, Mathers JA et al (2002) Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell 2(5):367–376

    Article  CAS  PubMed  Google Scholar 

  55. Knezevich SR, McFadden DE, Tao W, Lim JF, Sorensen PH (1998) A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet 18(2):184–187

    Article  CAS  PubMed  Google Scholar 

  56. Liu Q, Schwaller J, Kutok J, Cain D, Aster JC, Williams IR et al (2000) Signal transduction and transforming properties of the TEL–TRKC fusions associated with t(12, 15)(p13;q25) in congenital fibrosarcoma and acute myelogenous leukemia. EMBO J 19(8):1827–1838

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Rubin BP, Chen CJ, Morgan TW, Xiao S, Grier HE, Kozakewich HP et al (1998) Congenital mesoblastic nephroma t(12, 15) is associated with ETV6-NTRK3 gene fusion: cytogenetic and molecular relationship to congenital (infantile) fibrosarcoma. Am J Pathol 153(5):1451–1458

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Chou TT, Trojanowski JQ, Lee VM (2000) A novel apoptotic pathway induced by nerve growth factor-mediated TrkA activation in medulloblastoma. J Biol Chem 275(1):565–570

    Article  CAS  PubMed  Google Scholar 

  59. Grotzer MA, Janss AJ, Fung K, Biegel JA, Sutton LN, Rorke LB et al (2000) TrkC expression predicts good clinical outcome in primitive neuroectodermal brain tumors. J Clin Oncol 18(5):1027–1035

    CAS  PubMed  Google Scholar 

  60. Kim JY, Sutton ME, Lu DJ, Cho TA, Goumnerova LC, Goritchenko L et al (1999) Activation of neurotrophin-3 receptor TrkC induces apoptosis in medulloblastomas. Cancer Res 59(3):711–719

    CAS  PubMed  Google Scholar 

  61. Segal RA, Goumnerova LC, Kwon YK, Stiles CD, Pomeroy SL (1994) Expression of the neurotrophin receptor TrkC is linked to a favorable outcome in medulloblastoma. Proc Natl Acad Sci USA 91(26):12867–12871

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Ng YK, Wong EY, Lau CP, Chan JP, Wong SC, Chan AS et al (2012) K252a induces anoikis-sensitization with suppression of cellular migration in Epstein-Barr virus (EBV)—associated nasopharyngeal carcinoma cells. Invest New Drugs 30(1):48–58

    Article  CAS  PubMed  Google Scholar 

  63. McGregor LM, McCune BK, Graff JR, McDowell PR, Romans KE, Yancopoulos GD et al (1999) Roles of trk family neurotrophin receptors in medullary thyroid carcinoma development and progression. Proc Natl Acad Sci USA 96(8):4540–4545

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Eggert A, Grotzer MA, Ikegaki N, Zhao H, Cnaan A, Brodeur GM et al (2001) Expression of the neurotrophin receptor TrkB is associated with unfavorable outcome in Wilms’ tumor. J Clin Oncol 19(3):689–696

    CAS  PubMed  Google Scholar 

  65. Martin-Zanca D, Oskam R, Mitra G, Copeland T, Barbacid M (1989) Molecular and biochemical characterization of the human trk proto-oncogene. Mol Cell Biol 9(1):24–33

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Mitra G, Martin-Zanca D, Barbacid M (1987) Identification and biochemical characterization of p70TRK, product of the human TRK oncogene. Proc Natl Acad Sci U S A 84(19):6707–6711

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Yu Y, Zhang S, Wang X, Yang Z, Ou G (2010) Overexpression of TrkB promotes the progression of colon cancer. Apmis 118(3):188–195

    Article  CAS  PubMed  Google Scholar 

  68. Okugawa Y, Tanaka K, Inoue Y, Kawamura M, Kawamoto A, Hiro J et al (2013) Brain-derived neurotrophic factor/tropomyosin-related kinase B pathway in gastric cancer. Br J Cancer 108(1):121–130

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Guo D, Hou X, Zhang H, Sun W, Zhu L, Liang J et al (2011) More expressions of BDNF and TrkB in multiple hepatocellular carcinoma and anti-BDNF or K252a induced apoptosis, suppressed invasion of HepG2 and HCCLM3 cells. J Exp Clin Cancer Res 30:97

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Jin W, Lee JJ, Kim MS, Son BH, Cho YK, Kim HP (2011) DNA methylation-dependent regulation of TrkA, TrkB, and TrkC genes in human hepatocellular carcinoma. Biochem Biophys Res Commun 406(1):89–95

    Article  CAS  PubMed  Google Scholar 

  71. Harada T, Yatabe Y, Takeshita M, Koga T, Yano T, Wang Y et al (2011) Role and relevance of TrkB mutations and expression in non-small cell lung cancer. Clin Cancer Res 17(9):2638–2645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Doebele R, Vaishnavi A, Capelletti M, Le A, Kako S, Butaney M et al (2013) NTRK1 gene fusions as a novel oncogene target in lung cancer. American Society of Clinical Oncology Annual Meeting 2013. ASCO University, Chicago, IL, p. suppl: abstr 8023

  73. Yu X, Liu L, Cai B, He Y, Wan X (2008) Suppression of anoikis by the neurotrophic receptor TrkB in human ovarian cancer. Cancer Sci 99(3):543–552

    Article  CAS  PubMed  Google Scholar 

  74. Desmet CJ, Peeper DS (2006) The neurotrophic receptor TrkB: a drug target in anti-cancer therapy? Cell Mol Life Sci 63(7–8):755–759

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants from the NIH (CA-094194; GMB), Alex’s Lemonade Stand Foundation and the Audrey E. Evans Endowed Chair in Molecular Oncology (GMB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garrett M. Brodeur.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 47 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Croucher, J.L., Iyer, R., Li, N. et al. TrkB inhibition by GNF-4256 slows growth and enhances chemotherapeutic efficacy in neuroblastoma xenografts. Cancer Chemother Pharmacol 75, 131–141 (2015). https://doi.org/10.1007/s00280-014-2627-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-014-2627-1

Keywords

Navigation