Skip to main content

Advertisement

Log in

Chemotherapy-associated steatohepatitis induced by irinotecan: a novel animal model

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Nonalcoholic steatohepatitis (NASH) has been associated with irinotecan (IRI)-based cancer chemotherapy regimens. The purpose of this study was to propose and test a consistent model of IRI-induced NASH, filling a gap in the medical literature.

Methods

Swiss male mice were distributed in groups (n = 8) and injected with saline (5 mL/kg, i.p.; control) or IRI (25, 50, 75 or 100 mg/kg, i.p.) thrice a week for 7 weeks. Blood samples were collected to measure the serum concentrations of proteins, alanine and aspartate aminotransferases (ALT and AST). Each week animals were euthanized, and the livers were submitted to myeloperoxidase (MPO) assay, lipid dosage, immunohistochemistry for inducible nitric oxide synthase (iNOS), TNF-α and interleukin-1β (IL-1β), and histopathological analysis. Survival rates were also determined.

Results

Mice treated with IRI had a significantly (p < 0.05) lower survival rate than controls and time- and dose-dependent body weight loss. ALT and AST plasma levels increased in relation to controls only in mice receiving IRI 50 mg/kg (p < 0.05). The histopathological features characteristic of NASH was observed, including steatosis, lobular neutrophil infiltration and ballooning hepatocytic degeneration. Additional findings included increased MPO, lipid accumulation, portal neutrophil infiltration, IL-1β and iNOS expression and fibrosis in liver tissues and low serum protein levels compared to controls.

Conclusion

This is the first report of a consistent model of IRI-induced NASH capable of mimicking clinical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ludwig J, Viggiano TR, McGill DB, Oh BJ (1980) Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease. Mayo Clin Proc 55:434–438

    PubMed  CAS  Google Scholar 

  2. Mulhall BP, Ong JP, Younossi ZM (2002) Non-alcoholic fatty liver disease: an overview. J Gastroenterol Hepatol 17:1136–1143

    Article  PubMed  CAS  Google Scholar 

  3. Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR (1999) Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol 94:2467–2474

    Article  PubMed  CAS  Google Scholar 

  4. Matteoni CA, Younossi ZM, Gramlich T, Boparai N, Liu YC, McCullough AJ (1999) Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology 116:1413–1419

    Article  PubMed  CAS  Google Scholar 

  5. Kleiner DE, Brunt EM, Natta MV, Behling C, Contos MJ, Cummings OW et al (2005) Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41:1313–1321

    Article  PubMed  Google Scholar 

  6. Vauthey JN, Pawlik TM, Ribero D, Wu TT, Zorzi D, Hoff PM et al (2006) Chemotherapy regimen predicts steatohepatitis and an increase in 90-day mortality after surgery for hepatic colorectal metastases. J Clin Oncol 24:2065–2072

    Article  PubMed  CAS  Google Scholar 

  7. Robinson SM, Wilson CH, Burt AD, Manas DM, White SA (2012) Chemotherapy-associated liver injury in patients with colorectal liver metastases: a systematic review and meta-analysis. Ann Surg Oncol. doi:10.1245/s10434-012-2438-8

    PubMed Central  Google Scholar 

  8. Saltz LB, Cox JV, Blanke C, Rosen LS, Fehrenbacher L, Moore MJ et al (2000) Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. Irinotecan Study Group. N Engl J Med 343(13):904–914

    Article  Google Scholar 

  9. House MG, Ito H, Gonnen M, Fong Y, Allen PJ, DeMatteo RP et al (2010) Survival after hepatic resection for metastatic colorectal cancer: trends in outcomes for 1600 patients during two decades at a single institution. J Am Coll Surg 210(5):744–752

    Article  PubMed  Google Scholar 

  10. Bismuth H, Adam R, Le′vi F, Farabos C, Waechter F, Castaing D et al (1996) Resection of nonresectable liver metastases from colorectal cancer after neoadjuvant chemotherapy. Ann Surg 224:509–522

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Adam R, Delvart V, Pascal G, Valeanu A, Castaing D, Azoulay D et al (2004) Rescue surgery for unresectable colorectal liver metastasis downstaged by chemotherapy: a model to predict long-term survival. Ann Surg 240:644–657

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zorzi D, Laurent A, Pawlick TM, Lauwers GY, Vauthey JN, Abdalla EK (2007) Chemotherapy-associated hepatotoxicity and surgery for colorectal liver metastasis. Br J Surg 94:274–286

    Article  PubMed  CAS  Google Scholar 

  13. Hammond JS, Guha IN, Beckingham IJ, Lobo DN (2011) Prediction, prevention and management of postresection liver failure. Br J Surg 98:1188–1200

    Article  PubMed  CAS  Google Scholar 

  14. Day CP, Jame OF (1998) Steatohepatitis: a tale of two ‘hits’? Gatroenterology 114:842–845

    Article  CAS  Google Scholar 

  15. Melo ML, Brito GA, Soares RC, Carvalho SB, Silva JV, Soares PM et al (2008) Role of cytokines (TNF-α, IL-1β and KC) in the pathogenesis of CPT-11-induced intestinal mucositis in mice: effect of pentoxifylline and thalidomide. Cancer Chemother Pharmacol 61(5):775–784

    Article  PubMed  CAS  Google Scholar 

  16. Bradley PP, Christensen RD, Rothstein G (1982) Cellular and extracellular myeloperoxidase in pyogenic inflammation. Blood 60:618–622

    PubMed  CAS  Google Scholar 

  17. Bligh EG, Dyer WJ (1959) A rapid method for total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  PubMed  CAS  Google Scholar 

  18. Hsu SM, Raine L (1981) Protein A, avidin and biotin in immunohistochemistry. J Histochem Cytochem 29:1349–1353

    Article  PubMed  CAS  Google Scholar 

  19. Fulco RA, Costa RC, Germano MP, Torre EA, Viscomi MG, Salimbeni V et al (2000) Hepatotoxicity of camptothecin derivatives in a primary culture system of rat hepatocytes. J Chemother 12(4):345–351

    Article  PubMed  CAS  Google Scholar 

  20. Keizman D, Maimon N, Ish-Shalom M, Buchbut D, Inbar M, Klein B et al (2010) An animal model for chemotherapy-associated steatohepatitis and its prevention by the oral administration of fatty acid bile acid conjugate. Cancer 116(1):251–255

    PubMed  CAS  Google Scholar 

  21. Mikalauskas S, Mikalauskiene L, Bruns H, Nickkholgh A, Hoffmann K, Longerich T et al (2011) Dietary glycine protects from chemotherapy-induced hepatotoxicity. Amino Acids 40(4):1139–1150

    Article  PubMed  CAS  Google Scholar 

  22. Rasheed AZ, Rubin AH (2008) Toposiomerase-interactiona agents. In: DeVita VT, Lawrence TS, Rosenberg SA (eds) Devita, Hellman & Rosenberg’s cancer: principles & practice of oncology, 8th edn. Lippincott Williams & Wilkins, Philadelphia, pp 439–440

    Google Scholar 

  23. Tilg H, Moschen AR (2010) Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 52:1836–1846

    Article  PubMed  CAS  Google Scholar 

  24. Dinarello CA (2000) Proinflammatory cytokines. Chest 118:503–508

    Article  PubMed  CAS  Google Scholar 

  25. Valles SL, Blanco AM, Azorin I, Guasch R, Pascual M, Gomez-Lechon MJ et al (2003) Chronic ethanol consumption enhances interleukin-1 mediated signal transduction in rat liver and in cultured hepatocytes. Alcohol Clin Exp Res 27(12):1979–1986

    Article  PubMed  CAS  Google Scholar 

  26. Garcia-Monzon C, Martin-Perez E, Iacono OL, Fernández-Bermejo M, Majano PL, Apolinario A et al (2000) Characterization of pathogenic and prognostic factors of nonalcoholic steatohepatitis associated with obesity. J Hepatol 33:716–724

    Article  PubMed  CAS  Google Scholar 

  27. Ha SK (2010) CHAE C. Inducible nitric oxide distribution in the fatty liver of a mouse with high fat diet induced obesity. Exp Anim 59(5):595–604

    Article  PubMed  CAS  Google Scholar 

  28. Geller DA, Nussler AK, Di Silvio M, Lowenstein CJ, Shapiro RA, Wang SC et al (1993) Cytokines, endotoxin and glucocorticoids regulate the expression of inducible nitric oxide synthase in hepatocytes. Proc Natl Acad Sci 90:522–526

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Uslusoy HS, Nak SG, Gulten M (2011) Noninvasive predictors for liver fibrosis in patients with nonalcoholic steatohepatitis. World J Hepatol 3(8):219–227

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kleiner DE, Brunt EM (2012) Nonalcoholic fatty liver disease: pathologic patterns and biopsy evaluation in clinical research. Semin Liver Dis 32:2–13

    Google Scholar 

Download references

Acknowledgments

We are grateful to Maria Silvandira Freire and Karina Felismino da Silva Santos for technical assistance. The authors received financial support from CNPq [National Council for Research and Development], CAPES [Brazilian government program for continuing higher education] and FUNCAP [Ceará State Foundation for Research Support]. RAR, MHLPS and GACB are CNPq scholarship holders.

Conflict of interest

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronaldo Albuquerque Ribeiro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, M.L.V., Lima-Júnior, R.C.P., Aragão, K.S. et al. Chemotherapy-associated steatohepatitis induced by irinotecan: a novel animal model. Cancer Chemother Pharmacol 74, 711–720 (2014). https://doi.org/10.1007/s00280-014-2434-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-014-2434-8

Keywords

Navigation