Skip to main content

Advertisement

Log in

DrugPath: a database for academic investigators to match oncology molecular targets with drugs in development

  • Short Communication
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Academic laboratories are developing increasingly large amounts of data that describe the genomic landscape and gene expression patterns of various types of cancers. Such data can potentially identify novel oncology molecular targets in cancer types that may not be the primary focus of a drug sponsor’s initial research for an investigational new drug. Obtaining preclinical data that point toward the potential for a given molecularly targeted agent, or a novel combination of agents requires knowledge of drugs currently in development in both the academic and commercial sectors.

Methods

We have developed the DrugPath database (http://www.drugpath.org) as a comprehensive, free-of-charge resource for academic investigators to identify agents being developed in academics or industry that may act against molecular targets of interest. DrugPath data on molecular targets overlay the Michigan Molecular Interactions (http://mimi.ncibi.org) gene–gene interaction map to facilitate identification of related agents in the same pathway.

Results

The database catalogs 2,081 drug development programs representing 751 drug sponsors and 722 molecular and genetic targets.

Conclusions

DrugPath should assist investigators in identifying and obtaining drugs acting on specific molecular targets for biological and preclinical therapeutic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. McLeod HL (2013) Cancer pharmacogenomics: early promise, but concerted effort needed. Science 339(6127):1563–1566. doi:10.1126/science.1234139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Yao S, Zhu Y, Chen L (2013) Advances in targeting cell surface signalling molecules for immune modulation. Nat Rev Drug Discov 12(2):130–146. doi:10.1038/nrd3877

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Diaz-Moralli S, Tarrado-Castellarnau M, Miranda A, Cascante M (2013) Targeting cell cycle regulation in cancer therapy. Pharmacol Ther 138(2):255–271. doi:10.1016/j.pharmthera.2013.01.011

    Article  CAS  PubMed  Google Scholar 

  4. McCubrey JA, Steelman LS, Chappell WH, Sun L, Davis NM, Abrams SL, Franklin RA, Cocco L, Evangelisti C, Chiarini F, Martelli AM, Libra M, Candido S, Ligresti G, Malaponte G, Mazzarino MC, Fagone P, Donia M, Nicoletti F, Polesel J, Talamini R, Bäsecke J, Mijatovic S, Maksimovic-Ivanic D, Michele M, Tafuri A, Dulińska-Litewka J, Laidler P, D’Assoro AB, Drobot L, Umezawa D, Montalto G, Cervello M, Demidenko ZN (2012) Advances in targeting signal transduction pathways. Oncotarget 3(12):1505–1521

    PubMed Central  PubMed  Google Scholar 

  5. Waller CF (2010) Imatinib mesylate. Recent Results Cancer Res 184:3–20. doi:10.1007/978-3-642-01222-8_1

    Article  CAS  PubMed  Google Scholar 

  6. Torti D, Trusolino L (2011) Oncogene addiction as a foundational rationale for targeted anti-cancer therapy: promises and perils. EMBO Mol Med 3(11):623–636. doi:10.1002/emmm.201100176

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Guidance for Industry (2010) Co development of two or more unmarketed investigational drugs for use in combination. US Food and Drug Administration

  8. Yap TA, Omlin A, de Bono JS (2013) Development of therapeutic combinations targeting major cancer signaling pathways. J Clin Oncol 31(12):1592–1605. doi:10.1200/JCO.2011.37.6418

    Article  CAS  PubMed  Google Scholar 

  9. Tarcea VG, Weymouth T, Ade A, Bookvich A, Gao J, Mahavisno V, Wright Z, Chapman A, Jayapandian M, Ozgür A, Tian Y, Cavalcoli J, Mirel B, Patel J, Radev D, Athey B, States D, Jagadish HV (2009) Michigan molecular interactions r2: from interacting proteins to pathways. Nucleic Acids Res 37(Database issue):D642–D646. doi:10.1093/nar/gkn722

    Google Scholar 

  10. Claus BL, Underwood DJ (2002) Discovery informatics: its evolving role in drug discovery. Drug Discov Today 7(18):957–966

    Article  PubMed  Google Scholar 

  11. Bard JB, Rhee SY (2004) Ontologies in biology: design, applications and future challenges. Nat Rev Genet 5(3):213–222. doi:10.1038/nrg1295

    Article  CAS  PubMed  Google Scholar 

  12. Hodgson J (2002) Reconstructing pharmaceutical instinct. Nat Biotechnol 20(12):1199–1203. doi:10.1038/nbt1202-1199

    Article  CAS  PubMed  Google Scholar 

  13. Searls DB (2005) Data integration: challenges for drug discovery. Nat Rev Drug Discov 4(1):45–58. doi:10.1038/nrd1608

    CAS  PubMed  Google Scholar 

  14. Gene, National Center for Biotechnology Information. http://www.ncbi.nlm.nih.gov/gene

  15. Loregian A, Palù G (2013) How academic labs can approach the drug discovery process as a way to synergize with big pharma. Trends Microbiol 21(6):261–264. doi:10.1016/j.tim.2013.03.006

    Article  CAS  PubMed  Google Scholar 

  16. Zinner DE, Bolcic-Jankovic D, Bjankovic D, Clarridge B, Blumenthal D, Campbell EG (2009) Participation of academic scientists in relationships with industry. Health Aff (Millwood) 28(6):1814–1825. doi:10.1377/hlthaff.28.6.1814

    Article  Google Scholar 

  17. Kang MH, Smith MA, Morton CL, Keshelava N, Houghton PJ, Reynolds CP (2011) National Cancer Institute pediatric preclinical testing program: model description for in vitro cytotoxicity testing. Pediatr Blood Cancer 56(2):239–249. doi:10.1002/pbc.22801

    Article  PubMed Central  PubMed  Google Scholar 

  18. Roses AD, Burns DK, Chissoe S, Middleton L, St Jean P (2005) Disease-specific target selection: a critical first step down the right road. Drug Discov Today 10(3):177–189. doi:10.1016/S1359-6446(04)03321-5

    Article  PubMed  Google Scholar 

  19. Tralau-Stewart CJ, Wyatt CA, Kleyn DE, Ayad A (2009) Drug discovery: new models for industry-academic partnerships. Drug Discov Today 14(1–2):95–101. doi:10.1016/j.drudis.2008.10.003

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Cameron Smith and Heidi Michaels for collecting data for the Web site. This project was supported by Grant USAMRMC 06213001 from The United States Department of Defense.

Conflict of interest

Authors have no potential conflicts of interest related to this paper. Brandon Fisch owns 1985 Media which created the Web site.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Patrick Reynolds.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, E.D., Fisch, B.M.A., Arceci, R.J. et al. DrugPath: a database for academic investigators to match oncology molecular targets with drugs in development. Cancer Chemother Pharmacol 73, 1089–1093 (2014). https://doi.org/10.1007/s00280-014-2433-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-014-2433-9

Keywords

Navigation