Skip to main content

Advertisement

Log in

The histone deacetylase inhibitor vorinostat induces calreticulin exposure in childhood brain tumour cells in vitro

  • Short Communication
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

It has recently been recognised that anticancer chemotherapy can elicit an immunogenic form of apoptosis characterised by the exposure of calreticulin (CRT) on the surface of dying tumour cells, entailing an immune response that contributes to the therapeutic outcome. CRT exposure has been found to be induced by anthracyclins and oxaliplatin, but not by other proapoptotic antineoplastic agents including etoposide, camptothecin and cisplatin. In this study, we examined the histone deacetylase inhibitor vorinostat for its capability to stimulate CRT exposure in tumour cells.

Methods

Childhood tumour cells, i.e. the brain tumour cell lines PFSK and DAOY and the Ewing’s sarcoma cell line CADO-ES-1, were treated with vorinostat, and CRT exposure was determined by flow cytometric analysis of CRT immunofluorescence. Combination effects of vorinostat/TRAIL and vorinostat/bortezomib were also assessed.

Results

Vorinostat treatment induced CRT exposure in PFSK and DAOY cells, but not in caspase-8-deficient CADO-ES-1 cells. CRT exposure could be prevented by the pan-caspase inhibitor z-VAD-fmk and by brefeldin A, an inhibitor of Golgi-mediated transport.

Conclusion

Vorinostat has the capacity to elicit CRT exposure, suggesting its usefulness as immunogenic antitumour agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Abbreviations

CRT:

Calreticulin

ER:

Endoplasmatic reticulum

HDACi:

Histone deacetylase inhibitor

sPNET:

Supratentorial primitive neuroectodermal tumour

References

  1. Lane AA, Chabner BA (2009) Histone deacetylase inhibitors in cancer therapy. J Clin Oncol 27:5459–5468

    Article  CAS  PubMed  Google Scholar 

  2. Richon VM, Garcia-Vargas J, Hardwick JS (2009) Development of vorinostat: current applications and future perspectives for cancer therapy. Cancer Lett 280:201–210

    Article  CAS  PubMed  Google Scholar 

  3. Zitvogel L, Apetoh L, Ghiringhelli F, Andre F, Tesniere A, Kroemer G (2008) The anticancer immune response: indispensable for therapeutic success? J Clin Invest 118:1991–2001

    Article  CAS  PubMed  Google Scholar 

  4. Spisek R, Charalambous A, Mazumder A, Vesole DH, Jagannath S, Dhodapkar MV (2007) Bortezomib enhances dendritic cell (DC)-mediated induction of immunity to human myeloma via exposure of cell surface heat shock protein 90 on dying tumor cells: therapeutic implications. Blood 109:4839–4845

    Article  CAS  PubMed  Google Scholar 

  5. Gardai SJ, McPhillips KA, Frasch SC et al (2005) Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123:321–334

    Article  CAS  PubMed  Google Scholar 

  6. Obeid M, Tesniere A, Ghiringhelli F et al (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13:54–61

    Article  CAS  PubMed  Google Scholar 

  7. Tesniere A, Schlemmer F, Boige V et al (2010) Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene 29:482–491

    Article  CAS  PubMed  Google Scholar 

  8. Armeanu S, Bitzer M, Lauer UM et al (2005) Natural killer cell-mediated lysis of hepatoma cells via specific induction of NKG2D ligands by the histone deacetylase inhibitor sodium valproate. Cancer Res 65:6321–6329

    Article  CAS  PubMed  Google Scholar 

  9. Skov S, Pedersen MT, Andresen L, Straten PT, Woetmann A, Odum N (2005) Cancer cells become susceptible to natural killer cell killing after exposure to histone deacetylase inhibitors due to glycogen synthase kinase-3-dependent expression of MHC class I-related chain A and B. Cancer Res 65:11136–11145

    Article  CAS  PubMed  Google Scholar 

  10. Schmudde M, Braun A, Pende D et al (2008) Histone deacetylase inhibitors sensitize tumour cells for cytotoxic effects of natural killer cells. Cancer Lett 272:110–121

    Article  CAS  PubMed  Google Scholar 

  11. Magner WJ, Kazim AL, Stewart C et al (2000) Activation of MHC class I, II, and CD40 gene expression by histone deacetylase inhibitors. J Immunol 165:7017–7024

    CAS  PubMed  Google Scholar 

  12. Maeda T, Towatari M, Kosugi H, Saito H (2000) Up-regulation of costimulatory/adhesion molecules by histone deacetylase inhibitors in acute myeloid leukemia cells. Blood 96:3847–3856

    CAS  PubMed  Google Scholar 

  13. Setiadi AF, Omilusik K, David MD et al (2008) Epigenetic enhancement of antigen processing and presentation promotes immune recognition of tumors. Cancer Res 68:9601–9607

    Article  CAS  PubMed  Google Scholar 

  14. Packer RJ (2008) Childhood brain tumors: accomplishments and ongoing challenges. J Child Neurol 23:1122–1127

    Article  PubMed  Google Scholar 

  15. Mitchell DA, Fecci PE, Sampson JH (2008) Immunotherapy of malignant brain tumors. Immunol Rev 222:70–100

    Article  CAS  PubMed  Google Scholar 

  16. Kumar KS, Sonnemann J, Beck JF (2006) Histone deacetylase inhibitors induce cell death in supratentorial primitive neuroectodermal tumor cells. Oncol Rep 16:1047–1052

    CAS  PubMed  Google Scholar 

  17. Sonnemann J, Kumar KS, Heesch S et al (2006) Histone deacetylase inhibitors induce cell death and enhance the susceptibility to ionizing radiation, etoposide, and TRAIL in medulloblastoma cells. Int J Oncol 28:755–766

    CAS  PubMed  Google Scholar 

  18. Panaretakis T, Kepp O, Brockmeier U et al (2009) Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J 28:578–590

    Article  CAS  PubMed  Google Scholar 

  19. Fulda S, Kufer MU, Meyer E, van Valen F, Dockhorn-Dworniczak B, Debatin KM (2001) Sensitization for death receptor- or drug-induced apoptosis by re-expression of caspase-8 through demethylation or gene transfer. Oncogene 20:5865–5877

    Article  CAS  PubMed  Google Scholar 

  20. Sonnemann J, Dreyer L, Hartwig M et al (2007) Histone deacetylase inhibitors induce cell death and enhance the apoptosis-inducing activity of TRAIL in Ewing’s sarcoma cells. J Cancer Res Clin Oncol 133:847–858

    Article  CAS  PubMed  Google Scholar 

  21. Dzieran J, Beck JF, Sonnemann J (2008) Differential responsiveness of human hepatoma cells versus normal hepatocytes to TRAIL in combination with either histone deacetylase inhibitors or conventional cytostatics. Cancer Sci 99:1685–1692

    Article  CAS  PubMed  Google Scholar 

  22. Muldoon LL, Soussain C, Jahnke K et al (2007) Chemotherapy delivery issues in central nervous system malignancy: a reality check. J Clin Oncol 25:2295–2305

    Article  CAS  PubMed  Google Scholar 

  23. Hockly E, Richon VM, Woodman B et al (2003) Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington’s disease. Proc Natl Acad Sci USA 100:2041–2046

    Article  CAS  PubMed  Google Scholar 

  24. Fruhwald MC, Witt O (2008) The epigenetics of cancer in children. Klin Padiatr 220:333–341

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the input and discussions of Barbara Bröker (Institute for Immunology, University of Greifswald). This work was supported by a grant from the “Wilhelm Sander-Stiftung, Neustadt/Donau”. S.G. received a fellowship from the “IZKF des Universitätsklinikum Jena”; M.S. received a fellowship from the “Alfried Krupp Wissenschaftskolleg Greifswald der Alfried Krupp von Bohlen und Halbach-Stiftung”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Sonnemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sonnemann, J., Greßmann, S., Becker, S. et al. The histone deacetylase inhibitor vorinostat induces calreticulin exposure in childhood brain tumour cells in vitro. Cancer Chemother Pharmacol 66, 611–616 (2010). https://doi.org/10.1007/s00280-010-1302-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-010-1302-4

Keywords

Navigation