Skip to main content

Advertisement

Log in

Sunitinib malate

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Recently, there has been a growing interest in understanding the role of receptor tyrosine kinases (RTK), such as vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR), stem cell factor receptor (KIT), and fms-like tyrosine kinase 3 (FLT3), in promoting tumor angiogenesis, tumor growth and metastasis. Sunitinib (sunitinib malate; SU11248; SUTENT®; Pfizer Inc, New York, NY, USA) is a novel, orally bio-available, oxindole, multi-targeted tyrosine kinase inhibitor with high binding affinity for VEGFR and PDGFR which has shown anti-tumor and anti-angiogenic activities. This drug recently received approval from the US Food and Administration (FDA) in two indications simultaneously: advanced renal cell carcinoma (adRCC) and gastrointestinal stromal tumors (GIST), in patients who are resistant or intolerant to the treatment with imatinib. The present article reviews the recent pharmacologic and clinical data related to the use of this new promising drug in the field of oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heinrich MC, Blanke CD, Druker BJ, Corless CL (2002) Inhibition of KIT tyrosine kinase activity: a novel molecular approach to the treatment of KIT-positive malignancies. J Clin Oncol 20:1692–1703

    Article  PubMed  CAS  Google Scholar 

  2. Rubin BP, Schuetze SM, Eary JF, Norwood TH, Mirza S, Conrad EU, Bruckner JD (2002) Molecular targeting of plateletderived growth factor B by imatinib mesylate in a patient with metastatic dermatofibrosarcoma protuberans. J Clin Oncol 20:3586–3591

    Article  PubMed  CAS  Google Scholar 

  3. Gilliland DG, Griffin JD (2002) Role of FLT3 in leukemia. Curr Opin Hematol 9:274–281

    Article  PubMed  Google Scholar 

  4. Gale NW, Yancopoulos GD (1999) Growth factors acting via endothelial cell-specific receptor tyrosine kinases: VEGFs, angiopoietins, and ephrins in vascular development. Genes Dev 13:1055–1066

    PubMed  CAS  Google Scholar 

  5. O’Farrell AM, Foran JM, Fiedler W, Serve H, Paquette RL, Cooper MA, Yuen HA, Louie SG, Kim H, Nicholas S, Heinrich MC, Berdel WE, Bello C, Jacobs M, Scigalla P, Manning WC, Kelsey S, Cherrington JM (2003) An innovative phase 1 clinical study demonstrates inhibition of FLT3 phosphorylation by SU11248 in acute myeloid leukemia patients. Clin Cancer Res 9:5465–5476

    PubMed  CAS  Google Scholar 

  6. Mendel DB, Laird AD, Xin X, Louie SG, Christensen JG, Li G, Schreck RE, Abrams TJ, Ngai TJ, Lee LB, Murray LJ, Carver J, Chan E, Moss KG, Haznedar JO, Sukbuntherng J, Blake RA, Sun C, Tang C, Miller T, Shirazian S, McMahon G, Cherrington JM (2003) In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting VEGF and PDGF receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin. Cancer Res 9:327–337

    PubMed  CAS  Google Scholar 

  7. Abrams TJ, Murray LJ, Pesenti E, Holway VW, Colombo T, Lee LB, Cherrington JM, Pryer NK (2003) Preclinical evaluation of the tyrosine kinase inhibitor SU11248 as a single agent and in combination with “standard of care” therapeutic agents for the treatment of breast cancer. Mol Cancer Ther 2:1011–1021

    PubMed  CAS  Google Scholar 

  8. Laird AD, Cherrington JM (2003) Small molecule tyrosine kinase inhibitors: clinical development of anticancer agents. Expert Opin Invest Drugs 12:51–64

    Article  CAS  Google Scholar 

  9. Baratte S, Sarati S, Frigerio E, James CA, Ye C, Zhang Q (2004) Quantitation of SU11248, an oral multi-target tyrosine kinase inhibitor, and its metabolite in monkey tissues by liquid chromatograph with tandem mass spectrometry following semi-automated liquid–liquid extraction. J Chromatogr A 1024:87–94

    Article  PubMed  CAS  Google Scholar 

  10. Houk BE, Amantea M, Motzer RJ, Michaelson MD, Rini BI, George DJ, Redman BG, Hudes GR, Poland B, Bello CL (2006) Pharmacokinetics (PK) and efficacy of sunitinib in patients with metastatic renal cell carcinoma (mRCC). J Clin Oncol. In: ASCO annual meeting proceedings part I, vol 24, no. 18S

  11. Faivre S, Delbaldo C, Vera K, Robert C, Lozahic S, Lassau N, Bello C, Deprimo S, Brega N, Massimini G, Armand JP, Scigalla P, Raymond E (2006) Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J Clin Oncol 24:25–35

    Article  PubMed  CAS  Google Scholar 

  12. Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, Thun MJ (2006) Cancer statistics, 2006. CA Cancer J Clin 56:106–130

    Article  PubMed  Google Scholar 

  13. Amato RJ (2005) Renal cell carcinoma: review of novel single-agent therapeutics and combination regimens. Ann Oncol 16:7–15

    Article  PubMed  CAS  Google Scholar 

  14. Chow WH, Devesa SS, Warren JL, Fraumeni JF Jr (1999) Rising incidence of renal cell cancer in the United States. JAMA 281:1628–1631

    Article  PubMed  CAS  Google Scholar 

  15. Yagoda A, Abi-Rached B, Petrylak D (1995) Chemotherapy for advanced renal-cell carcinoma: 1983–1993. Semin Oncol 22:42–60

    PubMed  CAS  Google Scholar 

  16. Rosenberg SA, Yang JC, Topalian SL, Schwartzentruber DJ, Weber JS, Parkinson DR, Seipp CA, Einhorn JH, White DE (1994) Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin. JAMA 271:907–913

    Article  PubMed  CAS  Google Scholar 

  17. Bex A, Mallo H, Kerst M, Haanen J, Horenblas S, de Gast GC (2005) A phase-II study of pegylated interferon alfa-2b for patients with metastatic renal cell carcinoma and removal of the primary tumor. Cancer Immunol Immunother 54:713–719

    Article  PubMed  CAS  Google Scholar 

  18. Motzer RJ, Rini BI, Bukowski RM, George DJ, Hudes GR, Redman BG, Margolin KA, Merchan JR, Wilding G, Ginsberg MS, Bacik J, Kim ST, Baum CM, Michaelson MD (2006) Sunitinib in patients with metastatic renal cell carcinoma. JAMA 295:2516–2524

    Article  PubMed  CAS  Google Scholar 

  19. Motzer RJ, Michaelson MD, Redman BG, Hudes GR, Wilding G, Figlin RA, Ginsberg MS, Kim ST, Baum CM, DePrimo SE, Li JZ, Bello CL, Theuer CP, George DJ, Rini BI (2006) Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet derived growth factor receptor, in patients with metastatic renal cell carcinoma. J Clin Oncol 24:16–24

    Article  PubMed  CAS  Google Scholar 

  20. Motzer RJ. Rini BI, Michaelson MD, Redman BG, Hudes GR, Wilding G, Bukowski RM, George DJ, Kim ST, Baum CM, the SU11248 Study Group (2005) Phase 2 trials of SU11248 show antitumor activity in second-line therapy for patients with metastatic renal cell carcinoma (RCC). Proc Am Soc Clin Oncol A4508

  21. Rini BI, George DJ, Michaelson MD, Rosenberg JE, Bukowski RM, Sosman JA, Stadler WM, Margolin K, Hutson TE, Baum CM (2006) Efficacy and safety of sunitinib malate (SU11248) in bevacizumab-refractory metastatic renal cell carcinoma (mRCC). J Clin Oncol. In: ASCO Annual meeting proceedings part I, vol 24, no. 18S

  22. Escudier B, Chevreau C, Lasset C, Douillard JY, Ravaud A, Fabbro M, Caty A, Rossi JF, Viens P, Bergerat JP, Savary J, Negrier S (1999) Cytokines in metastatic renal cell carcinoma: is it useful to switch to interleukin-2 or interferon after failure of a first treatment? Groupe Francais d’immunotherape. J Clin Oncol 17:2039–2043

    PubMed  CAS  Google Scholar 

  23. Motzer RJ, Bacik J, Schwartz LH, Reuter V, Russo P, Marion S, Mazumdar M (2004) Prognostic factors for survival in previously treated patients with metastatic renal cell carcinoma. J Clin Oncol 22:454–463

    Article  PubMed  Google Scholar 

  24. Yang JC, Haworth L, Sherry RM, Hwu P, Schwartzentruber DJ, Topalian SL, Steinberg SM, Chen HX, Rosenberg SA (2003) A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med 349:427–434

    Article  PubMed  CAS  Google Scholar 

  25. Rini B, Rixe O, Bukowski R, Michaelson MD, Wilding G et al (2005) AG-013736, a multi-target tyrosine kinase receptor inhibitor, demonstrates antitumor activity in a phase 2 study of cytokine-refractory, metastatic renal cell cancer (RCC). J Clin Oncol (meeting abstracts) 23(suppl):380s (abstract 4508)

    Google Scholar 

  26. Ratain MJ, Eisen T, Stadler WM, Flaherty KT, Kaye SB, Rosner GL, Gore M, Desai AA, Patnaik A, Xiong HQ, Rowinsky E, Abbruzzese JL, Xia C, Simantov R, Schwartz B, O’Dwyer PJ (2006) Phase II placebo-controlled randomized discontinuation trial of sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol 24:2505–2512

    Article  PubMed  CAS  Google Scholar 

  27. Fletcher CD, Berman JJ, Corless C, Gorstein F, Lasota J, Longley BJ, Miettinen M, O’Leary TJ, Remotti H, Rubin BP, Shmookler B, Sobin LH, Weiss SW (2002) Diagnosis of gastrointestinal stromal tumors: a consensus approach. Hum Pathol 33:459–465

    Article  PubMed  Google Scholar 

  28. Nilsson B, Bumming P, Meis-Kindblom JM, Oden A, Dortok A, Gustavsson B, Sablinska K, Kindblom LG (2005) Gastrointestinal stromal tumors: the incidence, prevalence, clinical course, and prognostication in the preimatinib mesylate era. Cancer 103:821–829

    Article  PubMed  Google Scholar 

  29. Casper ES (2000) Gastrointestinal stromal tumors. Curr Treat Options Oncol 1:267–273

    PubMed  CAS  Google Scholar 

  30. Conlon KC, Casper ES, Brennan MF (1995) Primary gastrointestinal sarcomas: analysis of prognostic variables. Ann Surg Oncol 2:26031

    Article  Google Scholar 

  31. Hirota S, Isozaki K, Moriyama Y, Hashimoto K, Nishida T, Ishiguro S, Kawano K, Hanada M, Kurata A, Takeda M, Muhammad Tunio G, Matsuzawa Y, Kanakura Y, Shinomura Y, Kitamura Y (1998) Gain of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279:577–580

    Article  PubMed  CAS  Google Scholar 

  32. Heinrich MC, Corless CL, Duensing A, McGreevey L, Chen CJ, Joseph N, Singer S, Griffith DJ, Haley A, Town A, Demetri GD, Fletcher CD, Fletcher JA (2003) PDGFRA activating mutations in gastrointestinal stromal tumors. Science 299:708–710

    Article  PubMed  CAS  Google Scholar 

  33. Demetri GD, von Mehren M, Blanke CD, Van den Abbeele AD, Eisenberg B, Roberts PJ, Heinrich MC, Tuveson DA, Singer S, Janicek M, Fletcher JA, Silverman SG, Silberman SL, Capdeville R, Kiese B, Peng B, Dimitrijevic S, Druker BJ, Corless C, Fletcher CD, Joensuu H (2002) Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 347:472–480

    Article  PubMed  CAS  Google Scholar 

  34. Dagher R, Cohen M, Williams G, Rothmann M, Gobburu J, Robbie G, Rahman A, Chen G, Staten A, Griebel D, Pazdur R (2002) Approval summary: Imitanib mesylate in the treatment of metastatic and/or unresectable malignant gastrointestinal stromal tumors. Clin Cancer Res 8:3034–3038

    PubMed  CAS  Google Scholar 

  35. Tamborini E, Bonadiman L, Greco A, Albertini V, Negri T, Gronchi A, Bertulli R, Colecchia M, Casali PG, Pierotti MA, Pilotti S (2004) A new mutation in the KIT ATP pocket causes acquired resistance to imatinib in a gastrointestinal stromal tumor patient. Gastroenterology 127:294–9

    Article  PubMed  CAS  Google Scholar 

  36. Debiec-Rychter M, Cools J, Dumez H, Sciot R, Stul M, Mentens N, Vranckx H, Wasag B, Prenen H, Roesel J, Hagemeijer A, Van Oosterom A, Marynen P (2005) Mechanisms of resistance to imatinib mesylate in gastrointestinal stromal tumors and activity of the PKC412 inhibitor against imatinib-resistant mutants. Gastroenterology 128:270–279

    Article  PubMed  CAS  Google Scholar 

  37. Demetri GD, Desai J, Fletcher JA, Morgan JA, Fletcher CDM, Kazanovicz A, Van Den Abbeele A, Baum C, Maki R, Heinrich MC (2004) SU11248, a multi-targeted tyrosine kinase inhibitor, can overcome imatinib (IM) resistance caused by diverse genomic mechanisms in patients (pts) with metastatic gastrointestinal stromal tumor (GIST). J Clin Oncol 22(14):3001

    Google Scholar 

  38. Demetri GD, van Oosterom AT, Blackstein M, Garrett C, Shah M, Heinrich M, McArthur G, Judson I, Baum CM, Casali PG (2005) Phase III, multicenter, randomized, double blind, placebo-controlled trial of SU11248 in patients following failure of imatinib for metastatic GIST. J Clin Oncol 23:S308

    Google Scholar 

  39. FDA Approves new treatment for gastrointestinal and kidney cancer, P06-11, Rockville, MD, U.S. Food and Drug Administration, 2006, www.fda.gov/bbs/topics/news/2006/NEW01302.html

  40. Demetri G, van Oosterom AT, Garrett C, Blackstein M, Shah M, Verweij JJ, McArthur G, Judson I, Baum C, Casali P (2006) Improved survival and sustained clinical benefit with SU11248 (SU) in pts with GIST after failure of imatinib mesylate (IM) therapy in a phase III trial. J Clin Oncol. In: ASCO Abstract 8

  41. Larson RA (2001) Current use and future development of gemtuzumab ozogamicin. Semin Hematol 38(6):24–31

    Article  PubMed  CAS  Google Scholar 

  42. Yee KW, O’Farrell AM, Smolich BD, Cherrington JM, McMahon G, Wait CL, McGreevey LS, Griffith DJ, Heinrich MC (2002) SU5416 and SU5614 inhibit kinase activity of wild-type and mutant FLT3 receptor tyrosine kinase. Blood 100:2941–2949

    Article  PubMed  CAS  Google Scholar 

  43. Mizuki M, Fenski R, Hualfter H, Matsumura I, Schmidt R, Muller C, Gruning W, Kratz-Albers K, Serve S, Steur C, Buchner T, Kienast J, Kanakura Y, Berdel WE, Serve H (2000) FLT3 mutations from patients with acute myeloid leukaemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways. Blood 96:3907–3914

    PubMed  CAS  Google Scholar 

  44. Kottaridis PD, Gale RE, Frew ME, Harrison G, Langabeer SE, Belton AA, Walker H, Wheatley K, Bowen DT, Burnett AK, Goldstone AH, Linch DC (2001) The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 98:1752–1759

    Article  PubMed  CAS  Google Scholar 

  45. Meshinchi S, Woods WG, Stirewalt DL, Sweetser DA, Buckley JD, Tjoa TK, Bernstein ID, Radich JP (2001) Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia. Blood 97:89–94

    Article  PubMed  CAS  Google Scholar 

  46. Fiedler W, Serve H, Dohner H, Schwittay M, Ottmann OG, O’Farrell AM, Bello CL, Allred R, Manning WC, Cherrington JM, Louie SG, Hong W, Brega NM, Massimini G, Scigalla P, Berdel WE, Hossfeld DK (2005) A phase 1 study of SU11248 in the treatment of patients with refractory or resistant acute myeloid leukemia (AML) or not amenable to conventional therapy for the disease. Blood 105:986–993

    Article  PubMed  CAS  Google Scholar 

  47. Birkenkamp KU, Geugien M, Lemmink HH, Kruijer W, Vellenga E (2001) Regulation of constitutive STAT5 phosphorylation in acute myeloid leukemia blasts. Leukemia 15:1923–1931

    PubMed  CAS  Google Scholar 

  48. Levis M, Allebach J, Tse KF, Zheng R, Baldwin BR, Smith BD, Jones-Bolin S, Ruggeri B, Dionne C, Small D (2002) A FLT3-targeted tyrosine kinase inhibitor is cytotoxic to leukemia cells in vitro and in vivo. Blood 99:3885–3891

    Article  PubMed  CAS  Google Scholar 

  49. Pessino A, Sobrero A (2006) Optimal treatment of metastatic colorectal cancer. Expert Rev Anticancer Ther 6:801–812

    Article  PubMed  CAS  Google Scholar 

  50. Lenz H, Marshall J, Rosen L, Belt R, Hurwitz H, Eckhardt S, Bergsland E, Haller D, Chao R, Saltz L (2006) Phase II trial of SU11248 in patients with metastatic colorectal cancer (MCRC) after failure of standard chemotherapy. J Clin Oncol Abstract 241

  51. Abrams TJ, Murray LJ, Pesenti E, Holway VW, Colombo T, Lee LB, Cherrington JM, Pryer NK (2003) Preclinical evaluation of the tyrosine kinase inhibitor SU11248 as a single agent and in combination with “standard of care” therapeutic agents for the treatment of breast cancer. Mol Cancer Ther 2:1011–1021

    PubMed  CAS  Google Scholar 

  52. Murray LJ, Abrams TJ, Long KR, Ngai TJ, Olson LM, Hong W, Keast PK, Brassard JA, O’Farrell AM, Cherrington JM, Pryer NK (2003) SU11248 inhibits tumor growth and CSF-1R-dependent osteolysis in an experimental breast cancer bone metastasis model. Clin Exp Metastasis 20:757–766

    Article  PubMed  CAS  Google Scholar 

  53. Miller KD, Burstein HJ, Elias AD, Rugo HS, Cobleigh MA, Pegram MD, Eisenberg PD, Collier M, Adams BJ, Baum CM (2005) Phase II study of SU11248, a multitargeted receptor tyrosine kinase inhibitor (TKI), in patients (pts) with previously treated metastatic breast cancer (MBC). J Clin Oncol. In: ASCO 23, no.16S:563

  54. Desai J, Dileo P, Morgan JA, Larsen PR, Chen MH, George S, Jackson J, Baum C, Demetri GD (2005) Hypothyroidism may accompany SU11248 therapy in a subset of patients (pts) with metastatic (met) gastrointestinal stromal tumors (GIST) and is manageable with replacement therapy. J Clin Oncol In: ASCO annual meeting proceedings, vol 23, no. 16S, part I of II (June 1 suppl) Abstract 3040

  55. Bello C, Houk B, Sherman L, Misbah S, Sarapa N, Smeraglia J, Haung X (2005) Effect of rifampin on the pharmacokinetics of SU11248 in healthy volunteers. J Clin Oncol In: ASCO annual meeting proceedings, vol 23, no. 16S, part I of II (June 1 suppl) Abstract 3078

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassane Izzedine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Izzedine, H., Buhaescu, I., Rixe, O. et al. Sunitinib malate. Cancer Chemother Pharmacol 60, 357–364 (2007). https://doi.org/10.1007/s00280-006-0376-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-006-0376-5

Keywords

Navigation