Skip to main content
Log in

Genistein-induced apoptosis via Akt signaling pathway in anaplastic large-cell lymphoma

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

More than half of anaplastic large-cell lymphoma (ALCL) are associated with chromosomal translocation t(2;5)(p23;q35) that leads to the expression of nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) oncoprotein. NPM-ALK activates the antiapoptotic phosphatidylinositol-3 kinase/Akt (PI3K/Akt) signaling pathway, which plays a critical role in cell survival and apoptosis. Inhibition of the PI3K/Akt pathway has been considered as a therapeutic target for cancer where PI3K/Akt activation is a causative factor. Genistein, a natural isoflavonoid found in soy products, has been shown to inhibit cell growth and induce apoptosis in a wide variety of cell lines. Here, we demonstrated that treatment of two t(2;5) ALCL cell lines, SUDHL-1 and Karpas299, with genistein induced apoptosis in a time- and dose-dependent manner. Concurrently, these cells exhibited a decrease in Akt protein levels and subsequent downregulation of Akt activity (Akt phosphorylation). Furthermore, genistein treatment induced mitochondrial membrane potential change, caspase-3 activation and PARP cleavage. From these results, we conclude that inhibition of the Akt signaling pathway and induction of apoptosis by genistein could be used as a new treatment modality for the prevention and/or treatment of t(2;5) ALCL and other hematopoietic malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ALCL:

Anaplastic large-cell lymphoma

ALK:

Anaplastic lymphoma kinase

NPM:

Nucleophosmin

PARP:

Poly(ADP-ribose) polymerase

PI3K:

Phosphatidylinositol-3 kinase

References

  1. Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S, Itoh N, Shibuya M, Fukami Y (1987) Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem 262:5592–5595

    CAS  PubMed  Google Scholar 

  2. Alhasan SA, Pietrasczkiwicz H, Alonso MD, Ensley J, Sarkar FH (1999) Genistein–induced cell cycle arrest and apoptosis in head and neck squamous cell carcinoma cell line. Nutr Cancer 34:12–19

    Article  CAS  PubMed  Google Scholar 

  3. Bai RY, Ouyang T, Miething C, Morris SW, Peschel C, Duyster J (2000) Nucleophosmin-anaplastic lymphoma kinase associated with anaplastic large-cell lymphoma activates the phosphatidylinositol 3-kinase/Akt antiapoptotic signaling pathway. Blood 96:4319–4327

    CAS  PubMed  Google Scholar 

  4. Bellacosa A, Testa JR, Staal SP, Tsichlis PN (1991) A retroviral oncogene, Akt, encoding a serine-threonine kinase containing an SH2-like region. Science 254:274–277

    CAS  PubMed  Google Scholar 

  5. Bischoff D, Pulford K, Manson DY, Morris SW (1997) Role of the nucleophosmin (NPM) portion of the non-Hodgkin’s lymphoma associated NPM-anaplastic lymphoma kinase fusion protein in oncogene. Mol Cell Biol 17:2312–2325

    PubMed  Google Scholar 

  6. Burgering BM, Ciffer PJ (1995) Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376:599–602

    Article  CAS  PubMed  Google Scholar 

  7. Chang F, Lee JT, Navolanic PM, Steelman LS, Shelton JG, Blalock WL, Franklin RA, McCubrey JA (2003) Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer therapy. Leukemia 17:590–603

    Article  CAS  PubMed  Google Scholar 

  8. Coluccia AM, Perego S, Cleris L, Gundy RH, Passoni L, Marchesi E, Formelli F, Gambacorti-Passerini C (2004) Bcl-xL down-regulation suppresses the tumorigenic potential of NPM/ALK in vitro and in vivo. Blood 103:2787–2794

    Article  CAS  PubMed  Google Scholar 

  9. Cotter TG, Glynn JM, Echeverri F, Green DR (1992) The induction of apoptosis by chemotherapeutic agents occurs in all phases of the cell cycle. Anticancer Res 12:773–779

    CAS  PubMed  Google Scholar 

  10. Davis JN, Singh B, Bhuiyan M, Sarkar FH (1998) Genistein-induced up-regulation of p21WAF, down-regulation of cyclin B, and induction of apoptosis in prostate cancer cells. Nutr Cancer 32:123–131

    CAS  PubMed  Google Scholar 

  11. Davis SP, Reddy H, Caviano M, Cohen P (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351(Part1):95–105

    Article  PubMed  Google Scholar 

  12. Franke TF, Kaplan DR, Cantly LC, Toker A (1997) Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-biphosphate. Science 275:665–668

    Article  CAS  PubMed  Google Scholar 

  13. Franke TF, Hornik CP, Segev L, Shostak GA, Sugimoto C (2003) PI3K/Akt and apoptosis: size matters. Oncogene 22:8983–8998

    Article  CAS  PubMed  Google Scholar 

  14. Gong L, Li Y, Nedeljkovic-Kurepa A, Sarkar FH (2003) Inactivation of NF-kappaB by genistein is mediated via Akt signaling pathway in breast cancer cells. Oncogene 22:4702–4709

    Article  CAS  PubMed  Google Scholar 

  15. Green D, Reed J (1998) Mitochondria and apoptosis. Science 281:1309–1312

    Article  CAS  PubMed  Google Scholar 

  16. Jaffe ES, Harris NL, Stein H, Vardiman JW (2001) Pathology and genetics of tumors of hematopoietic and lymphoid tissues. World Health Organization Classification of Tumors. IARC Press, Lyon

    Google Scholar 

  17. Kennedy SG, Kandel ES, Cross TK, Hay N (1999) Akt/protein kinase B inhibits cell death by preventing the release of cytochrome c from mitochondria. Mol Cell Biol 19:5800–5810

    CAS  PubMed  Google Scholar 

  18. Kolibaba KS, Druker BJ (1997) Protein tyrosine kinases and cancer. Biochem Biophys Acta 1333:F217–F248

    CAS  PubMed  Google Scholar 

  19. Kuefer MU, Look AT, Pulford K, Behm FG, Pattengale PK, Manson DY, Morris SW (1997) Retrovirus-mediated gene transfer to NPM-ALK causes lymphoid malignancy in mice. Blood 90:2901–2910

    CAS  PubMed  Google Scholar 

  20. Li Y, Sarkar FH (2002) Inhibition of nuclear factor kappaB activation in PC3 cells by genistein is mediated via Akt signaling pathway. Clin Cancer Res 8:2369–2377

    CAS  PubMed  Google Scholar 

  21. Li Y, Upadhyay S, Bhuiyan M, Sarkar FH (1999) Induction of apoptosis in breast cancer cells MDA-MB-231 by genistein. Oncogene 18:3166–3172

    Article  CAS  PubMed  Google Scholar 

  22. Lian F, Bhuiyan M, Li YW, Wall N, Kraut M, Sarkar FH (1998) Genistein-induced G2-M arrest, p21WAF1 up-regulation, and apoptosis in a non-small-cell lung cancer cell line. Nutr Cancer 31:184–191

    CAS  PubMed  Google Scholar 

  23. Martin SJ, Green DR (1995) Protease activation during apoptosis: death by a thousand cuts? Cell 82:349–352

    Article  CAS  PubMed  Google Scholar 

  24. Mohammad RM, Al-Katib A, Aboukameel A, Doerge DR, Sarkar F, Kucuk O (2003) Genistein sensitizes diffuse large cell lymphoma to CHOP chemotherapy. Mol Cancer Ther 2(12):1361–1368

    CAS  PubMed  Google Scholar 

  25. Morris SW, Kirstein MN, Valentine MB, Dittmer K, Shapiro DN, Look AT, Saltman DL (1995) Fusion of a kinase gene ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 267:316–317

    CAS  Google Scholar 

  26. Mouria M, Gukovskaya AS, Jung Y, Buechler P, Hines OJ, Reber HA, Pandol SJ (2002) Food-derived polyphenols inhibit pancreatic cancer growth through mitochondrial cytochrome c release and apoptosis. Int J Cancer 98:761–769

    Article  CAS  PubMed  Google Scholar 

  27. Nagata S (1997) Apoptosis by death factor. Cell 88:355–365

    Article  CAS  PubMed  Google Scholar 

  28. Sarkar FH, Li Y (2002) Mechanism of cancer chemoprevention by soy isoflavone genistein. Cancer Met Rev 21:265–280

    Article  CAS  Google Scholar 

  29. Slupianek A, Nieborowska-Skorska M, Hoser G, Morrione A, et al. (2001) Role of phosphatidylinositol 3-kinase-Akt pathway in nucleophosmin/anaplastic lymphoma kinase-mediated lymphomagenesis. Cancer Res 61:2194–2199

    CAS  PubMed  Google Scholar 

  30. Solomon E, Borrow J, Goddard AD (1991) Chromosomal aberrations and cancer. Science 254:1153–1160

    CAS  PubMed  Google Scholar 

  31. Spinozzi F, Pagliacci MC, Migliorati G, Moraca R, Grignani F, Riccardi C, Nicoletti I (1994) The natural tyrosine kinase inhibitor genistein produces cell cycle arrest and apoptosis in Jurkat T-leukemia cells. Leuk Res 18:431–439

    Article  CAS  PubMed  Google Scholar 

  32. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:312–316

    Article  Google Scholar 

  33. Toker A, Cantly LC (1997) Signaling through the lipid products of phosphoinositide-3-OH kinase. Nature 387:673–676

    Article  CAS  PubMed  Google Scholar 

  34. Turturro F, Frist AY, Arnold MD, Seth P, Pulford K (2001) Biochemical differences between SUDHL-1 and KARPAS 299 cells derived from t(2;5)-positive anaplastic large cell lymphoma are responsible for the different sensitivity to the antiproliferative effect of p27(Kip1). Oncogene 20:4466–4475

    Article  CAS  PubMed  Google Scholar 

  35. Vander Heiden MG, Chandel NS, Williamson EK, Schumacker PT, Thompson CB (1997) Bcl-XL regulates the membrane potential and volume homeostasis of mitochondria. Cell 91:627–637

    Article  CAS  PubMed  Google Scholar 

  36. Vanhaesebroeck B, Alessi DR (2000) The PI3K-PDK1 connection: more than just a road to PKB. Biochem J 346:561–576

    Article  CAS  PubMed  Google Scholar 

  37. Vanhaesebroeck B, Leevers SJ, Panayotou G, Waterfield MD (1997) Phosphoinositide 3-kinase: a conserved family of signal transducers. Trends Biochem Sci 22:267–272

    Article  CAS  PubMed  Google Scholar 

  38. Waggot W, Lo YMD, Bastard C, Gatter KC, Leroux D, Manson DY, Boultwood J, Wainscoat JS (1995) Detection of NPM-ALK DNA rearrangement in CD30+ anaplastic large cell lymphoma. Br J Haematol 89:905–907

    PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank Dr. Hitochi Ohno of Kyoto University for providing the SUDHL-1 and Karpas299 cell lines. This work was supported by the Korea Science and Engineering Foundation (KOSEF) through the Tumor Immunity Medical Research Center (TIMRC) of Seoul National University College of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chul Woo Kim.

Additional information

Sung-Shin Park and Yong-Nyun Kim should be regarded as equal first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, SS., Kim, YN., Jeon, Y.K. et al. Genistein-induced apoptosis via Akt signaling pathway in anaplastic large-cell lymphoma. Cancer Chemother Pharmacol 56, 271–278 (2005). https://doi.org/10.1007/s00280-004-0974-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-004-0974-z

Keywords

Navigation