Skip to main content
Log in

25-Hydroxy vitamin D deficiency is an inferior predictor of peripheral T-cell lymphomas

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

The aim of the study was to explore the significance and prognostic value of 25-hydroxy vitamin D (25-(OH) D) deficiency in peripheral T-cell lymphomas (PTCLs). One hundred fifty-six patients of newly diagnosed PTCLs were enrolled in the study. Univariate and multivariate regression analyses were performed to determine independent risk factors for progression-free survival (PFS) and overall survival (OS). Receiver operating characteristic (ROC) curves were plotted, and corresponding areas under the curve (AUC) were calculated to estimate the accuracy of International Prognostic Index (IPI) plus 25-(OH) D deficiency and Prognostic Index for T-cell lymphoma (PIT) plus 25-(OH) D deficiency respectively in PTCL risk stratification. Our results showed that the 25-(OH) D deficiency was an independent inferior prognostic factor for both PFS (P = 0.0019) and OS (P = 0.005) for PTCLs, especially for AITL and PTCL-not otherwise specified (PTCL-NOS). Additionally, adding 25-(OH) D deficiency to PIT indeed has a superior prognostic significance than PIT alone for PFS (P = 0.043) and OS (P = 0.036). Multivariate COX regression analysis revealed that PIT 2‒4, albumin (ALB) ≤ 35 g/L, and 25-(OH) D deficiency were regarded as independent risk factors of PFS and OS. Our results showed that 25-(OH) D deficiency was associated with inferior survival outcome of PTCLs, especially for AITL and PTCL-NOS. PIT plus 25-(OH) D deficiency could better indicate the prognosis for PFS and OS of PTCLs than PIT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

References

  1. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R et al (2016) The 2016 revision of the World Health Organization classification of lymphoid neoplasms [J]. Blood 127(20):2375–2390. https://doi.org/10.1182/blood-2016-01-643569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fiore D, Cappelli LV, Broccoli A, Zinzani PL, Chan WC, Inghirami G (2020) Peripheral T cell lymphomas: from the bench to the clinic [J]. Nat Rev Cancer 20(6):323–342. https://doi.org/10.1038/s41568-020-0247-0

    Article  CAS  PubMed  Google Scholar 

  3. Vose J, Armitage J, Weisenburger D, International T C L P (2008) International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes [J]. J Clin Oncol 26(25):4124–4130. https://doi.org/10.1200/JCO.2008.16.4558

    Article  PubMed  Google Scholar 

  4. Sun J, Yang Q, Lu Z, He M, Gao L, Zhu M et al (2012) Distribution of lymphoid neoplasms in China: analysis of 4,638 cases according to the World Health Organization classification [J]. Am J Clin Pathol 138(3):429–434. https://doi.org/10.1309/AJCP7YLTQPUSDQ5C

    Article  PubMed  Google Scholar 

  5. Yang QP, Zhang WY, Yu JB, Zhao S, Xu H, Wang WY et al (2011) Subtype distribution of lymphomas in Southwest China: analysis of 6,382 cases using WHO classification in a single institution [J]. Diagn Pathol 6:77. https://doi.org/10.1186/1746-1596-6-77

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ellin F, Landstrom J, Jerkeman M, Relander T (2014) Real-world data on prognostic factors and treatment in peripheral T-cell lymphomas: a study from the Swedish Lymphoma Registry [J]. Blood 124(10):1570–1577. https://doi.org/10.1182/blood-2014-04-573089

    Article  CAS  PubMed  Google Scholar 

  7. Mak V, Hamm J, Chhanabhai M, Shenkier T, Klasa R, Sehn LH et al (2013) Survival of patients with peripheral T-cell lymphoma after first relapse or progression: spectrum of disease and rare long-term survivors [J]. J Clin Oncol 31(16):1970–1976. https://doi.org/10.1200/JCO.2012.44.7524

    Article  CAS  PubMed  Google Scholar 

  8. d’Amore F, Relander T, Lauritzsen GF, Jantunen E, Hagberg H, Anderson H et al (2012) Up-front autologous stem-cell transplantation in peripheral T-cell lymphoma: NLG-T-01 [J]. J Clin Oncol 30(25):3093–3099. https://doi.org/10.1200/JCO.2011.40.2719

    Article  CAS  PubMed  Google Scholar 

  9. International Non-Hodgkin’s Lymphoma prognostic factors P (1993) A predictive model for aggressive non-Hodgkin’s lymphoma [J]. N Engl J Med 329(14):987–994. https://doi.org/10.1056/NEJM199309303291402

    Article  Google Scholar 

  10. Ansell SM, Habermann TM, Kurtin PJ, Witzig TE, Chen MG, Li CY et al (1997) Predictive capacity of the International Prognostic Factor Index in patients with peripheral T-cell lymphoma [J]. J Clin Oncol 15(6):2296–2301. https://doi.org/10.1200/JCO.1997.15.6.2296

    Article  CAS  PubMed  Google Scholar 

  11. Grant WB (2003) Health benefits of solar UV-B radiation through the production of vitamin D. Comment and response [J]. Photochem Photobiol Sci 2(12):1307–1308. https://doi.org/10.1039/b305583c. (discussion 1308-1310)

    Article  CAS  PubMed  Google Scholar 

  12. Schwartz GG, Skinner HG (2007) Vitamin D status and cancer: new insights [J]. Curr Opin Clin Nutr Metab Care 10(1):6–11. https://doi.org/10.1097/MCO.0b013e328011aa60

    Article  CAS  PubMed  Google Scholar 

  13. Xu DM, Liang JH, Wang L, Zhu HY, Xia Y, Fan L et al (2020) 25-Hydroxy vitamin D deficiency predicts inferior prognosis in mantle cell lymphoma [J]. J Cancer Res Clin Oncol 146(4):1003–1009. https://doi.org/10.1007/s00432-020-03125-w

    Article  CAS  PubMed  Google Scholar 

  14. Borchmann S, Cirillo M, Goergen H, Meder L, Sasse S, Kreissl S et al (2019) Pretreatment Vitamin D deficiency is associated with impaired progression-free and overall survival in Hodgkin Lymphoma [J]. J Clin Oncol 37(36):3528–3537. https://doi.org/10.1200/JCO.19.00985

    Article  CAS  PubMed  Google Scholar 

  15. Kim SJ, Shu C, Ryu KJ, Kang D, Cho J, Ko YH et al (2018) Vitamin D deficiency is associated with inferior survival of patients with extranodal natural killer/T-cell lymphoma [J]. Cancer Sci 109(12):3971–3980. https://doi.org/10.1111/cas.13844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Djurasinovic VT, Mihaljevic BS, SipeticGrujicic SB, Ignjatovic SD, Trajkovic G, Todorovic-Balint MR et al (2018) 25(OH) vitamin D deficiency in lymphoid malignancies, its prevalence and significance. Are we fully aware of it? [J]. Support Care Cancer 26(8):2825–2832. https://doi.org/10.1007/s00520-018-4101-9

    Article  PubMed  Google Scholar 

  17. Tracy SI, Maurer MJ, Witzig TE, Drake MT, Ansell SM, Nowakowski GS et al (2017) Vitamin D insufficiency is associated with an increased risk of early clinical failure in follicular lymphoma [J]. Blood Cancer J 7(8):e595. https://doi.org/10.1038/bcj.2017.70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Drake MT, Maurer MJ, Link BK, Habermann TM, Ansell SM, Micallef IN, Kelly JL, Macon WR, Nowakowski GS, Inwards DJ, Johnston PB, Singh RJ, Allmer C, Slager SL, Weiner GJ, Witzig TE, Cerhan JR (2010) Vitamin D insufficiency and prognosis in non-Hodgkin’s lymphoma [J]. J Clin Oncol 28(27):4191–8. https://doi.org/10.1200/JCO.2010.28.6674

    Article  PubMed  PubMed Central  Google Scholar 

  19. Holick MF (2007) Vitamin D deficiency [J]. N Engl J Med 357(3):266–281. https://doi.org/10.1056/NEJMra070553

    Article  CAS  PubMed  Google Scholar 

  20. Feldman D, Krishnan AV, Swami S, Giovannucci E, Feldman BJ (2014) The role of vitamin D in reducing cancer risk and progression [J]. Nat Rev Cancer 14(5):342–357. https://doi.org/10.1038/nrc3691

    Article  CAS  PubMed  Google Scholar 

  21. Olliver M, Spelmink L, Hiew J, Meyer-Hoffert U, Henriques-Normark B, Bergman P (2013) Immunomodulatory effects of vitamin D on innate and adaptive immune responses to Streptococcus pneumoniae [J]. J Infect Dis 208(9):1474–1481. https://doi.org/10.1093/infdis/jit355

    Article  CAS  PubMed  Google Scholar 

  22. Alaggio R, Amador C, Anagnostopoulos I, Attygalle AD, Araujo IBO, Berti E et al (2022) The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms [J]. Leukemia 36(7):1720–1748. https://doi.org/10.1038/s41375-022-01620-2

    Article  PubMed  PubMed Central  Google Scholar 

  23. Timmins MA, Wagner SD, Ahearne MJ (2020) The new biology of PTCL-NOS and AITL: current status and future clinical impact [J]. Br J Haematol 189(1):54–66. https://doi.org/10.1111/bjh.16428

    Article  PubMed  Google Scholar 

  24. Liu W, Zhang L, Xu HJ, Li Y, Hu CM, Yang JY et al (2018) The Anti-Inflammatory Effects of Vitamin D in Tumorigenesis [J]. Int J Mol Sci 19(9). https://doi.org/10.3390/ijms19092736

  25. Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion [J]. Science 331(6024):1565–1570. https://doi.org/10.1126/science.1203486

    Article  CAS  PubMed  Google Scholar 

  26. Pawlik A, Anisiewicz A, Filip-Psurska B, Nowak M, Turlej E, Trynda J et al (2018) Calcitriol and its analogs establish the immunosuppressive microenvironment that drives metastasis in 4T1 mouse mammary gland cancer [J]. Int J Mol Sci 19(7). https://doi.org/10.3390/ijms19072116

  27. Zmijewski MA (2019) Vitamin D and Human Health [J]. Int J Mol Sci 20(1). https://doi.org/10.3390/ijms20010145

  28. Medrano M, Carrillo-Cruz E, Montero I, Perez-Simon JA (2018) Vitamin D: effect on haematopoiesis and immune system and clinical applications [J]. Int J Mol Sci 19(9). https://doi.org/10.3390/ijms19092663

Download references

Funding

This research was funded by the National Natural Science Foundation of China (grant number 82200887 and 82370194), Jiangsu Science and Technology Department (grant number BK20220716), China Postdoctoral Science Foundation (grant number 2022M711404), and Young Scholars Fostering Fund of the First Affiliated Hospital of Nanjing Medical University (grant number PY2021028).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui Gao, Hua Yin or Wei Xu.

Ethics declarations

Ethical approval

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008 (5).

Informed consent

Informed consent was obtained from all patients for being included in the study.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, HR., Tang, J., Li, WY. et al. 25-Hydroxy vitamin D deficiency is an inferior predictor of peripheral T-cell lymphomas. Ann Hematol 103, 565–574 (2024). https://doi.org/10.1007/s00277-023-05536-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-023-05536-4

Keywords

Navigation