Skip to main content

Advertisement

Log in

Targeted therapy and immunotherapy for T cell acute lymphoblastic leukemia/lymphoma

  • Review Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

T cell acute lymphoblastic leukemia/lymphoma (T-ALL/LBL) is an aggressive malignancy of progenitor T cells. Despite significant improvements in survival of T-ALL/LBL over the past decades, treatment of relapsed and refractory T-ALL (R/R T-ALL/LBL) remains extremely challenging. The prognosis of R/R T-ALL/LBL patients who are intolerant to intensive chemotherapy remains poor. Therefore, innovative approaches are needed to further improve the survival of R/R T-ALL/LBL patients. With the widespread use of next-generation sequencing in T-ALL/LBL, a range of new therapeutic targets such as NOTCH1 inhibitors, JAK-STAT inhibitors, and tyrosine kinase inhibitors have been identified. These findings led to pre-clinical studies and clinical trials of molecular targeted therapy in T-ALL/LBL. Furthermore, immunotherapies such as CD7 CAR T cell therapy and CD5 CAR T cell therapy have shown profound response rate in R/R T-ALL/LBL. Here, we review the progress of targeted therapies and immunotherapies for T-ALL/LBL, and look at the future directions and challenges for the further use of these therapies in T-ALL/LBL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hunger SP, Mullighan CG (2015) Acute lymphoblastic leukemia in children. N Engl J Med 373(16):1541–1552. https://doi.org/10.1056/NEJMra1400972

    Article  CAS  PubMed  Google Scholar 

  2. Litzow MR, Ferrando AA (2015) How i treat T-cell acute lymphoblastic leukemia in adults. Blood 126(7):833–841. https://doi.org/10.1182/blood-2014-10-551895

    Article  CAS  PubMed  Google Scholar 

  3. Quist-Paulsen P, Toft N, Heyman M, Abrahamsson J, Griskevicius L, Hallbook H, Jonsson OG, Palk K, Vaitkeviciene G, Vettenranta K, Asberg A, Frandsen TL, Opdahl S, Marquart HV, Siitonen S, Osnes LT, Hultdin M, Overgaard UM, Wartiovaara-Kautto U, Schmiegelow K (2020) T-cell acute lymphoblastic leukemia in patients 1-45 years treated with the pediatric NOPHO all2008 protocol. Leukemia 34(2):347–357. https://doi.org/10.1038/s41375-019-0598-2

    Article  CAS  PubMed  Google Scholar 

  4. Yin H, Hong M, Deng J, Yao L, Qian C, Teng Y, Li T, Wu Q (2022) Prognostic significance of comprehensive gene mutations and clinical characteristics in adult t-cell acute lymphoblastic leukemia based on next-generation sequencing. Front Oncol 12:811151. https://doi.org/10.3389/fonc.2022.811151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu Y, Easton J, Shao Y, Maciaszek J, Wang Z, Wilkinson MR, McCastlain K, Edmonson M, Pounds SB, Shi L, Zhou X, Ma X, Sioson E, Li Y, Rusch M, Gupta P, Pei D, Cheng C, Smith MA et al (2017) The genomic landscape of pediatric and young adult t-lineage acute lymphoblastic leukemia. Nat Genet 49(8):1211–1218. https://doi.org/10.1038/ng.3909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fang-Fang Z, You Y, Wen-Jun L (2021) Progress in research on childhood T-cell acute lymphocytic leukemia, notch1 signaling pathway, and its inhibitors: a review. Bosn J Basic Med Sci 21(2):136–144. https://doi.org/10.17305/bjbms.2020.4687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Knoechel B, Bhatt A, Pan L, Pedamallu CS, Severson E, Gutierrez A, Dorfman DM, Kuo FC, Kluk M, Kung AL, Zweidler-McKay P, Meyerson M, Blacklow SC, DeAngelo DJ, Aster JC (2015) Complete hematologic response of early T-cell progenitor acute lymphoblastic leukemia to the γ-secretase inhibitor BMS-906024: genetic and epigenetic findings in an outlier case. Cold Spring Harb Mol Case Stud 1(1):a000539. https://doi.org/10.1101/mcs.a000539

    Article  PubMed  PubMed Central  Google Scholar 

  8. Pagliaro L, Moron Dalla Tor L, Federica V, Andrei P, Monica L, Kleissle S, Neuenschwander M, Gherli A, Cerretani E, D’Antuono A, Simoncini E, Montanaro A, Roti G (2022) P336: a chemotranscriptomic screening identifies the reversal of glucocorticoid resistance in notch1 mutated T-ALL. HemaSphere 6:236–237. https://doi.org/10.1097/01.HS9.0000844232.55007.ff

    Article  Google Scholar 

  9. Borthakur G, Martinelli G, Raffoux E, Chevallier P, Chromik J, Lithio A, Smith CL, Yuen E, Oakley GJ 3rd, Benhadji KA, DeAngelo DJ (2021) Phase 1 study to evaluate crenigacestat (ly3039478) in combination with dexamethasone in patients with T-cell acute lymphoblastic leukemia and lymphoma. Cancer 127(3):372–380. https://doi.org/10.1002/cncr.33188

    Article  CAS  PubMed  Google Scholar 

  10. Anand P, Guillaumet-Adkins A, Dimitrova V, Yun H, Drier Y, Sotudeh N, Rogers A, Ouseph MM, Nair M, Potdar S, Isenhart R, Kloeber JA, Vijaykumar T, Niu L, Vincent T, Guo G, Frede J, Harris MH, Place AE et al (2021) Single-cell rna-seq reveals developmental plasticity with coexisting oncogenic states and immune evasion programs in ETP-ALL. Blood 137(18):2463–2480. https://doi.org/10.1182/blood.2019004547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Medinger M, Junker T, Heim D, Tzankov A, Jermann PM, Bobadilla M, Vigolo M, Lehal R, Vogl FD, Bauer M, Passweg J (2022) Cb-103: A novel csl-nicd inhibitor for the treatment of NOTCH-driven T-cell acute lymphoblastic leukemia: a case report of complete clinical response in a patient with relapsed and refractory T-ALL. EJHaem 3(3):1009–1012. https://doi.org/10.1002/jha2.510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Senkevitch E, Li W, Hixon JA, Andrews C, Cramer SD, Pauly GT, Back T, Czarra K, Durum SK (2018) Inhibiting janus kinase 1 and bcl-2 to treat T cell acute lymphoblastic leukemia with il7-ralpha mutations. Oncotarget 9(32):22605–22617. https://doi.org/10.18632/oncotarget.25194

    Article  PubMed  PubMed Central  Google Scholar 

  13. Maude SL, Dolai S, Delgado-Martin C, Vincent T, Robbins A, Selvanathan A, Ryan T, Hall J, Wood AC, Tasian SK, Hunger SP, Loh ML, Mullighan CG, Wood BL, Hermiston ML, Grupp SA, Lock RB, Teachey DT (2015) Efficacy of jak/stat pathway inhibition in murine xenograft models of early T-cell precursor (ETP) acute lymphoblastic leukemia. Blood 125(11):1759–1767. https://doi.org/10.1182/blood-2014-06-580480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jaramillo S, Hennemann H, Horak P, Teleanu V, Heilig CE, Hutter B, Stenzinger A, Glimm H, Goeppert B, Muller-Tidow C, Frohling S, Schonland S, Schlenk RF (2021) Ruxolitinib is effective in the treatment of a patient with refractory T-ALL. EJHaem 2(1):139–142. https://doi.org/10.1002/jha2.143

    Article  PubMed  Google Scholar 

  15. Verbeke D, Gielen O, Jacobs K, Boeckx N, De Keersmaecker K, Maertens J, Uyttebroeck A, Segers H, Cools J (2019) Ruxolitinib synergizes with dexamethasone for the treatment of T-cell acute lymphoblastic leukemia. Hemasphere 3(6):e310. https://doi.org/10.1097/HS9.0000000000000310

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bodaar K, Yamagata N, Barthe A, Landrigan J, Chonghaile TN, Burns M, Stevenson KE, Devidas M, Loh ML, Hunger SP, Wood B, Silverman LB, Teachey DT, Meijerink JP, Letai A, Gutierrez A (2022) Jak3 mutations and mitochondrial apoptosis resistance in T-cell acute lymphoblastic leukemia. Leukemia 36(6):1499–1507. https://doi.org/10.1038/s41375-022-01558-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Degryse S, de Bock CE, Demeyer S, Govaerts I, Bornschein S, Verbeke D, Jacobs K, Binos S, Skerrett-Byrne DA, Murray HC, Verrills NM, Van Vlierberghe P, Cools J, Dun MD (2018) Mutant jak3 phosphoproteomic profiling predicts synergism between jak3 inhibitors and mek/bcl2 inhibitors for the treatment of T-cell acute lymphoblastic leukemia. Leukemia 32(3):788–800. https://doi.org/10.1038/leu.2017.276

    Article  CAS  PubMed  Google Scholar 

  18. Benyoucef A, Haigh K, Cuddihy A, Haigh JJ (2022) Jak/bcl2 inhibition acts synergistically with lsd1 inhibitors to selectively target ETP-ALL. Leukemia 36(12):2802–2816. https://doi.org/10.1038/s41375-022-01716-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Govaerts I, Prieto C, Vandersmissen C, Gielen O, Jacobs K, Provost S, Nittner D, Maertens J, Boeckx N, De Keersmaecker K, Segers H, Cools J (2021) Psen1-selective gamma-secretase inhibition in combination with kinase or xpo-1 inhibitors effectively targets T cell acute lymphoblastic leukemia. J Hematol Oncol 14(1):97. https://doi.org/10.1186/s13045-021-01114-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. De Smedt R, Morscio J, Reunes L, Roels J, Bardelli V, Lintermans B, Van Loocke W, Almeida A, Cheung LC, Kotecha RS, Mansour MR, Uyttebroeck A, Vandenberghe P, La Starza R, Mecucci C, Lammens T, Van Roy N, De Moerloose B, Barata JT et al (2020) Targeting cytokine- and therapy-induced pim1 activation in preclinical models of T-cell acute lymphoblastic leukemia and lymphoma. Blood 135(19):1685–1695. https://doi.org/10.1182/blood.2019003880

    Article  PubMed  Google Scholar 

  21. Padi SKR, Luevano LA, An N, Pandey R, Singh N, Song JH, Aster JC, Yu XZ, Mehrotra S, Kraft AS (2017) Targeting the pim protein kinases for the treatment of a T-cell acute lymphoblastic leukemia subset. Oncotarget 8(18):30199–30216. https://doi.org/10.18632/oncotarget.16320

    Article  PubMed  PubMed Central  Google Scholar 

  22. Shaaban Y, Jamal E, Atef B (2022) ALL-004 philadelphia chromosome-positive t-cell acute lymphoblastic leukemia/lymphoblastic lymphoma: a rare case report. Clin Lymphoma Myeloma Leuk 22(Suppl 2):S189. https://doi.org/10.1016/s2152-2650(22)01172-7

    Article  CAS  Google Scholar 

  23. Hagemeijer A, Graux C (2010) Abl1 rearrangements in T-cell acute lymphoblastic leukemia. Genes Chromosomes Cancer 49(4):299–308. https://doi.org/10.1002/gcc.20743

    Article  CAS  PubMed  Google Scholar 

  24. Veltri G, Sandei M, Silvestri D, Bresolin S, Pession A, Santoro N, Ziino O, Veltroni M, Rizzari C, Biffi A, Valsecchi MG, Conter V, Buldini B, Accordi B, Serafin V (2022) Nup214-abl1 fusion in childhood T-ALL. Pediatr. Blood Cancer:e29643. https://doi.org/10.1002/pbc.29643

  25. De Keersmaecker K, Porcu M, Cox L, Girardi T, Vandepoel R, de Beeck JO, Gielen O, Mentens N, Bennett KL, Hantschel O (2014) Nup214-abl1-mediated cell proliferation in T-cell acute lymphoblastic leukemia is dependent on the lck kinase and various interacting proteins. Haematologica 99(1):85–93. https://doi.org/10.3324/haematol.2013.088674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Deenik W, Beverloo HB, van der Poel-van de Luytgaarde SC, Wattel MM, van Esser JW, Valk PJ, Cornelissen JJ (2009) Rapid complete cytogenetic remission after upfront dasatinib monotherapy in a patient with a nup214-abl1-positive T-cell acute lymphoblastic leukemia. Leukemia 23(3):627–629. https://doi.org/10.1038/leu.2008.318

    Article  CAS  PubMed  Google Scholar 

  27. Frismantas V, Dobay MP, Rinaldi A, Tchinda J, Dunn SH, Kunz J, Richter-Pechanska P, Marovca B, Pail O, Jenni S, Diaz-Flores E, Chang BH, Brown TJ, Collins RH, Uhrig S, Balasubramanian GP, Bandapalli OR, Higi S, Eugster S et al (2017) Ex vivo drug response profiling detects recurrent sensitivity patterns in drug-resistant acute lymphoblastic leukemia. Blood 129(11):e26–e37. https://doi.org/10.1182/blood-2016-09-738070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Laukkanen S, Gronroos T, Polonen P, Kuusanmaki H, Mehtonen J, Cloos J, Ossenkoppele G, Gjertsen B, Oystein B, Heckman C, Heinaniemi M, Kontro M, Lohi O (2017) In silico and preclinical drug screening identifies dasatinib as a targeted therapy for T-ALL. Blood Cancer J 7(9):e604. https://doi.org/10.1038/bcj.2017.87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gocho Y, Liu J, Hu J, Yang W, Dharia NV, Zhang J, Shi H, Du G, John A, Lin TN, Hunt J, Huang X, Ju B, Rowland L, Shi L, Maxwell D, Smart B, Crews KR, Yang W et al (2021) Network-based systems pharmacology reveals heterogeneity in lck and bcl2 signaling and therapeutic sensitivity of T-cell acute lymphoblastic leukemia. Nat Cancer 2(3):284–299. https://doi.org/10.1038/s43018-020-00167-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Moskowitz AJ, Horwitz SM (2017) Targeting histone deacetylases in T-cell lymphoma. Leuk Lymphoma 58(6):1306–1319. https://doi.org/10.1080/10428194.2016.1247956

    Article  CAS  PubMed  Google Scholar 

  31. Ning ZQ, Li ZB, Newman MJ, Shan S, Wang XH, Pan DS, Zhang J, Dong M, Du X, Lu XP (2012) Chidamide (cs055/hbi-8000): A new histone deacetylase inhibitor of the benzamide class with antitumor activity and the ability to enhance immune cell-mediated tumor cell cytotoxicity. Cancer Chemother Pharmacol 69(4):901–909. https://doi.org/10.1007/s00280-011-1766-x

    Article  CAS  PubMed  Google Scholar 

  32. Xi M, Guo S, Bayin C, Peng L, Chuffart F, Bourova-Flin E, Rousseaux S, Khochbin S, Mi JQ, Wang J (2022) Chidamide inhibits the notch1-myc signaling axis in T-cell acute lymphoblastic leukemia. Front Med 16(3):442–458. https://doi.org/10.1007/s11684-021-0877-y

    Article  PubMed  Google Scholar 

  33. Gong K, Xie J, Yi H, Li W (2012) Cs055 (chidamide/hbi-8000), a novel histone deacetylase inhibitor, induces G1 arrest, ros-dependent apoptosis and differentiation in human leukaemia cells. Biochem J 443(3):735–746. https://doi.org/10.1042/bj20111685

    Article  CAS  PubMed  Google Scholar 

  34. Guan W, Jing Y, Dou L, Wang M, Xiao Y, Yu L (2020) Chidamide in combination with chemotherapy in refractory and relapsed t lymphoblastic lymphoma/leukemia. Leuk Lymphoma 61(4):855–861. https://doi.org/10.1080/10428194.2019.1691195

    Article  CAS  PubMed  Google Scholar 

  35. Belkina AC, Denis GV (2012) Bet domain co-regulators in obesity, inflammation and cancer. Nat Rev Cancer 12(7):465–477. https://doi.org/10.1038/nrc3256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu S, Jiang Y, Hong Y, Chu X, Zhang Z, Tao Y, Fan Z, Bai Z, Li X, Chen Y, Li Z, Ding X, Lv H, Du X, Lim SL, Zhang Y, Huang S, Lu J, Pan J, Hu S (2021) Brd4 protac degrader arv-825 inhibits T-cell acute lymphoblastic leukemia by targeting 'undruggable' myc-pathway genes. Cancer Cell Int 21(1):230. https://doi.org/10.1186/s12935-021-01908-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Piya S, Yang Y, Bhattacharya S, Sharma P, Ma H, Mu H, He H, Ruvolo V, Baran N, Davis RE, Jain AK, Konopleava M, Kantarjian H, Andreeff M, You MJ, Borthakur G (2022) Targeting the notch1-myc-CD44 axis in leukemia-initiating cells in T-ALL. Leukemia 36(5):1261–1273. https://doi.org/10.1038/s41375-022-01516-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Knoechel B, Roderick JE, Williamson KE, Zhu J, Lohr JG, Cotton MJ, Gillespie SM, Fernandez D, Ku M, Wang H, Piccioni F, Silver SJ, Jain M, Pearson D, Kluk MJ, Ott CJ, Shultz LD, Brehm MA, Greiner DL et al (2014) An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia. Nat Genet 46(4):364–370. https://doi.org/10.1038/ng.2913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y (2002) Role of histone h3 lysine 27 methylation in polycomb-group silencing. Science 298(5595):1039–1043. https://doi.org/10.1126/science.1076997

    Article  CAS  PubMed  Google Scholar 

  40. Andrieu GP, Kohn M, Simonin M, Smith CL, Cieslak A, Dourthe M, Charbonnier G, Graux C, Huguet F, Lhéritier V, Dombret H, Spicuglia S, Rousselot P, Boissel N, Asnafi V (2021) Prc2 loss of function confers a targetable vulnerability to bet proteins in T-ALL. Blood 138(19):1855–1869. https://doi.org/10.1182/blood.2020010081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Palmi C, Savino AM, Silvestri D, Bronzini I, Cario G, Paganin M, Buldini B, Galbiati M, Muckenthaler MU, Bugarin C, Della Mina P, Nagel S, Barisone E, Casale F, Locatelli F, Lo Nigro L, Micalizzi C, Parasole R, Pession A et al (2016) CRLF2 over-expression is a poor prognostic marker in children with high risk T-cell acute lymphoblastic leukemia. Oncotarget 7(37):59260–59272. https://doi.org/10.18632/oncotarget.10610

    Article  PubMed  PubMed Central  Google Scholar 

  42. Maciel ALT, Wolch K, Emerenciano M, Mansur MB (2022) CRLF2 overexpression defines an immature-like subgroup which is rescued through restoration of the prc2 function in T-cell precursor acute lymphoblastic leukemia. Genes Chromosomes Cancer 61(7):437–442. https://doi.org/10.1002/gcc.23036

    Article  CAS  PubMed  Google Scholar 

  43. Chonghaile TN, Roderick JE, Glenfield C, Ryan J, Sallan SE, Silverman LB, Loh ML, Hunger SP, Wood B, DeAngelo DJ, Stone R, Harris M, Gutierrez A, Kelliher MA, Letai A (2014) Maturation stage of T-cell acute lymphoblastic leukemia determines bcl-2 versus bcl-xl dependence and sensitivity to abt-199. Cancer Discov 4(9):1074–1087. https://doi.org/10.1158/2159-8290.CD-14-0353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Malfona F, Tanasi I, Papayannidis C, Federico V, Piccini M, Mancini V, Roncoroni E, Todisco E, Giglio F, Gentile M, Gianfelici V, Mulè A, Saraceni F, Vetro C, Zallio F, Del Principe MI, De Bellis E, Foà R, Bonifacio M, Chiaretti S (2022) Bcl-2 and bcl-xl antagonists for the treatment of relapsed and refractory adult acute lymphoblastic leukemia/lymphoblastic lymphoma. A campus ALL real-life study. Blood 140(Supplement 1):8979–8980. https://doi.org/10.1182/blood-2022-163716

    Article  Google Scholar 

  45. Pullarkat VA, Lacayo NJ, Jabbour E, Rubnitz JE, Bajel A, Laetsch TW, Leonard J, Colace SI, Khaw SL, Fleming SA, Mattison RJ, Norris R, Opferman JT, Roberts KG, Zhao Y, Qu C, Badawi M, Schmidt M, Tong B et al (2021) Venetoclax and navitoclax in combination with chemotherapy in patients with relapsed or refractory acute lymphoblastic leukemia and lymphoblastic lymphoma. Cancer Discov 11(6):1440–1453. https://doi.org/10.1158/2159-8290.Cd-20-1465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li Z, He S, Look AT (2019) The mcl1-specific inhibitor s63845 acts synergistically with venetoclax/abt-199 to induce apoptosis in T-cell acute lymphoblastic leukemia cells. Leukemia 33(1):262–266. https://doi.org/10.1038/s41375-018-0201-2

    Article  PubMed  Google Scholar 

  47. Peirs S, Frismantas V, Matthijssens F, Van Loocke W, Pieters T, Vandamme N, Lintermans B, Dobay MP, Berx G, Poppe B, Goossens S, Bornhauser BC, Bourquin JP, Van Vlierberghe P (2017) Targeting bet proteins improves the therapeutic efficacy of bcl-2 inhibition in T-cell acute lymphoblastic leukemia. Leukemia 31(10):2037–2047. https://doi.org/10.1038/leu.2017.10

    Article  CAS  PubMed  Google Scholar 

  48. Song D, Song C, Ge Z (2022) Pb1753: Synergistic antitumor effect of chidamide with venetoclax in t-cell acute lymphoblastic leukemia by suppressing pi3k/akt signaling. HemaSphere 6:1634–1635. https://doi.org/10.1097/01.HS9.0000849868.89934.c9

    Article  PubMed Central  Google Scholar 

  49. Gibson A, Trabal A, McCall D, Khazal S, Toepfer L, Bell DH, Roth M, Mahadeo KM, Nunez C, Short NJ, DiNardo C, Konopleva M, Issa GC, Ravandi F, Jain N, Borthakur G, Kantarjian HM, Jabbour E, Cuglievan B (2021) Venetoclax for children and adolescents with acute lymphoblastic leukemia and lymphoblastic lymphoma. Cancers (Basel) 14(1). https://doi.org/10.3390/cancers14010150

  50. Wan CL, Zou JY, Qiao M, Yin J, Shen XD, Qiu QC, Liu SB, Xue SL (2021) Venetoclax combined with azacitidine as an effective and safe salvage regimen for relapsed or refractory T-cell acute lymphoblastic leukemia: a case series. Leuk Lymphoma 62(13):3300–3303. https://doi.org/10.1080/10428194.2021.1957876

    Article  PubMed  Google Scholar 

  51. La Starza R, Cambò B, Pierini A, Bornhauser B, Montanaro A, Bourquin JP, Mecucci C, Roti G (2019) Venetoclax and bortezomib in relapsed/refractory early t-cell precursor acute lymphoblastic leukemia. JCO Precis Oncol 3. https://doi.org/10.1200/po.19.00172

  52. Kong J, Chen N, Li M, Zhang J, Wu X, Zong L, Wu D, Song B, Qiu H (2022) Venetoclax and decitabine in refractory tp53-mutated early T-cell precursor acute lymphoblastic leukemia. Ann Hematol 101(3):697–699. https://doi.org/10.1007/s00277-021-04530-y

    Article  CAS  PubMed  Google Scholar 

  53. Zhang X, Li J, Jin J, Yu W (2020) Relapsed/refractory early T-cell precursor acute lymphoblastic leukemia was salvaged by venetoclax plus hag regimen. Ann Hematol 99(2):395–397. https://doi.org/10.1007/s00277-019-03902-9

    Article  PubMed  Google Scholar 

  54. Tse V, Yee J, Tirado CA (2020) Expression and activity of dysregulated mirnas in T-ALL development and progression. J Assoc Genet Technol 46(4):211–219

    PubMed  Google Scholar 

  55. Dawidowska M, Jaksik R, Drobna M, Szarzyńska-Zawadzka B, Kosmalska M, Sędek Ł, Machowska L, Lalik A, Lejman M, Ussowicz M, Kałwak K, Kowalczyk JR, Szczepański T, Witt M (2019) Comprehensive investigation of mirnome identifies novel candidate mirna-mrna interactions implicated in t-cell acute lymphoblastic leukemia. Neoplasia 21(3):294–310. https://doi.org/10.1016/j.neo.2019.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Maćkowska-Maślak N, Drobna-Śledzińska M, Jaksik R, Kosmalska M, Witt M, Dawidowska M (2022) P332: Mir-625-5p is novel candidate oncomir in t-cell acute lymphoblastic leukemia implicated in regulation of apoptosis via repression of harakiri. HemaSphere 6:232–233. https://doi.org/10.1097/01.HS9.0000844216.90549.1b

    Article  Google Scholar 

  57. Najjary S, Mohammadzadeh R, Mansoori B, Vahidian F, Mohammadi A, Doustvandi MA, Khaze V, Hajiasgharzadeh K, Baradaran B (2021) Combination therapy with mir-34a and doxorubicin synergistically induced apoptosis in T-cell acute lymphoblastic leukemia cell line. Med Oncol 38(12):142. https://doi.org/10.1007/s12032-021-01578-8

    Article  CAS  PubMed  Google Scholar 

  58. Tembhare PR, Sriram H, Khanka T, Chatterjee G, Panda D, Ghogale S, Badrinath Y, Deshpande N, Patkar NV, Narula G, Bagal B, Jain H, Sengar M, Khattry N, Banavali S, Gujral S, Subramanian PG (2020) Flow cytometric evaluation of cd38 expression levels in the newly diagnosed T-cell acute lymphoblastic leukemia and the effect of chemotherapy on its expression in measurable residual disease, refractory disease and relapsed disease: an implication for anti-cd38 immunotherapy. J Immunother Cancer 8(1). https://doi.org/10.1136/jitc-2020-000630

  59. Bride KL, Vincent TL, Im SY, Aplenc R, Barrett DM, Carroll WL, Carson R, Dai Y, Devidas M, Dunsmore KP, Fuller T, Glisovic-Aplenc T, Horton TM, Hunger SP, Loh ML, Maude SL, Raetz EA, Winter SS, Grupp SA et al (2018) Preclinical efficacy of daratumumab in T-cell acute lymphoblastic leukemia. Blood 131(9):995–999. https://doi.org/10.1182/blood-2017-07-794214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Brown PA, Shah B, Advani A, Aoun P, Boyer MW, Burke PW, DeAngelo DJ, Dinner S, Fathi AT, Gauthier J, Jain N, Kirby S, Liedtke M, Litzow M, Logan A, Luger S, Maness LJ, Massaro S, Mattison RJ et al (2021) Acute lymphoblastic leukemia, version 2.2021, nccn clinical practice guidelines in oncology. J Natl Compr Canc Netw 19(9):1079–1109. https://doi.org/10.6004/jnccn.2021.0042

    Article  CAS  PubMed  Google Scholar 

  61. Cerrano M, Castella B, Lia G, Olivi M, Faraci DG, Butera S, Martella F, Scaldaferri M, Cattel F, Boccadoro M, Massaia M, Ferrero D, Bruno B, Giaccone L (2020) Immunomodulatory and clinical effects of daratumumab in T-cell acute lymphoblastic leukaemia. Br J Haematol 191(1):e28–e32. https://doi.org/10.1111/bjh.16960

    Article  CAS  PubMed  Google Scholar 

  62. Barbora V, Michaela N, Petr Ř, Markéta Ž, Eva F, Ester M, Jan S, Ondřej H, Lucie Š (2022) Cd38: A target in relapsed/refractory acute lymphoblastic leukemia-limitations in treatment and diagnostics. Pediatr. Blood Cancer:e29779. https://doi.org/10.1002/pbc.29779

  63. Boissel N, Chevallier P, Doronin V, Griskevicius L, Maschan A, McCloskey J, Rambaldi A, Rossi G, Sokolov A, Wartiovaara-Kautto U, Oprea C, Abbadessa G, Gosselin A, Macé S, Thomas X (2022) Isatuximab monotherapy in patients with refractory t-acute lymphoblastic leukemia or t-lymphoblastic lymphoma: Phase 2 study. Cancer Med 11(5):1292–1298. https://doi.org/10.1002/cam4.4478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Riillo C, Caracciolo D, Grillone K, Polera N, Tuccillo FM, Bonelli P, Juli G, Ascrizzi S, Scionti F, Arbitrio M, Lopreiato M, Siciliano MA, Sestito S, Talarico G, Galea E, Galati MC, Pensabene L, Loprete G, Rossi M et al (2022) A novel bispecific t-cell engager (CD1a x cd3epsilon) btce is effective against cortical-derived t cell acute lymphoblastic leukemia (T-ALL) cells. Cancers (Basel) 14(12). https://doi.org/10.3390/cancers14122886

  65. Caracciolo D, Riillo C, Ballerini A, Gaipa G, Lhermitte L, Rossi M, Botta C, Duroyon E, Grillone K, Gallo Cantafio ME, Buracchi C, Alampi G, Gulino A, Belmonte B, Conforti F, Golino G, Juli G, Altomare E, Polerà N et al (2021) Therapeutic afucosylated monoclonal antibody and bispecific T-cell engagers for T-cell acute lymphoblastic leukemia. J Immunother Cancer 9(2). https://doi.org/10.1136/jitc-2020-002026

  66. Cooper ML, Choi J, Staser K, Ritchey JK, Devenport JM, Eckardt K, Rettig MP, Wang B, Eissenberg LG, Ghobadi A, Gehrs LN, Prior JL, Achilefu S, Miller CA, Fronick CC, O'Neal J, Gao F, Weinstock DM, Gutierrez A et al (2018) An "off-the-shelf" fratricide-resistant CAR-t for the treatment of T cell hematologic malignancies. Leukemia 32(9):1970–1983. https://doi.org/10.1038/s41375-018-0065-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ye J, Jia Y, Tuhin IJ, Tan J, Monty MA, Xu N, Kang L, Li M, Lou X, Zhou M, Fang X, Shao J, Zhu H, Yan Z, Yu L (2022) Feasibility study of a novel preparation strategy for anti-CD7 CAR-t cells with a recombinant anti-CD7 blocking antibody. Mol Ther Oncolytics 24:719–728. https://doi.org/10.1016/j.omto.2022.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pan J, Tan Y, Wang G, Deng B, Ling Z, Song W, Seery S, Zhang Y, Peng S, Xu J, Duan J, Wang Z, Yu X, Zheng Q, Xu X, Yuan Y, Yan F, Tian Z, Tang K et al (2021) Donor-derived CD7 chimeric antigen receptor t cells for t-cell acute lymphoblastic leukemia: first-in-human, phase i trial. J Clin Oncol 39(30):3340–3351. https://doi.org/10.1200/JCO.21.00389

    Article  CAS  PubMed  Google Scholar 

  69. Tan Y, Shan L, Zhao L, Deng B, Ling Z, Zhang Y, Peng S, Xu J, Duan J, Wang Z, Yu X, Zheng Q, Xu X, Tian Z, Zhang Y, Zhang J, Chang AH, Feng X, Pan J (2023) Long-term follow-up of donor-derived CD7 CAR T-cell therapy in patients with T-cell acute lymphoblastic leukemia. J Hematol Oncol 16(1):34. https://doi.org/10.1186/s13045-023-01427-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lu P, Liu Y, Yang J, Zhang X, Yang X, Wang H, Wang L, Wang Q, Jin D, Li J, Huang X (2022) Naturally selected CD7 CAR-t therapy without genetic manipulations for T-ALL/lbl: First-in-human phase 1 clinical trial. Blood 140(4):321–334. https://doi.org/10.1182/blood.2021014498

    Article  CAS  PubMed  Google Scholar 

  71. Zhang M, Chen D, Fu X, Meng H, Nan F, Sun Z, Yu H, Zhang L, Li L, Li X, Wang X, Wang M, You F, Li Z, Chang Y, Zhou Z, Yan J, Li J, Wu X et al (2022) Autologous nanobody-derived fratricide-resistant CD7-CAR T cell therapy for patients with relapsed and refractory T-cell acute lymphoblastic leukemia/lymphoma. Clin Cancer Res. https://doi.org/10.1158/1078-0432.Ccr-21-4097

  72. Cappell KM, Sherry RM, Yang JC, Goff SL, Vanasse DA, McIntyre L, Rosenberg SA, Kochenderfer JN (2020) Long-term follow-up of anti-cd19 chimeric antigen receptor t-cell therapy. J Clin Oncol 38(32):3805–3815. https://doi.org/10.1200/JCO.20.01467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Majzner RG, Mackall CL (2018) Tumor antigen escape from CAR T-cell therapy. Cancer Discov 8(10):1219–1226. https://doi.org/10.1158/2159-8290.CD-18-0442

    Article  CAS  PubMed  Google Scholar 

  74. Fanqiao M, Chen X, Ren X, Li L (2022) CD7 CAR t bridging to allo-hsct in r/r T-ALL: a case report. Pediatr Transplant:e14367. https://doi.org/10.1111/petr.14367

  75. Li Z, Wang X, Wen X, Xu T, Song Y, Wu T (2022) S240: CD7 chimeric antigen receptor t cells bridging to allogeneic hematopoietic stem cell transplantation improved disease-free survival in refractory/relapsed t-cell acute lymphoblastic leukemia. HemaSphere 6:141–142. https://doi.org/10.1097/01.HS9.0000843852.28463.2a

    Article  Google Scholar 

  76. Mamonkin M, Rouce RH, Tashiro H, Brenner MK (2015) A T-cell-directed chimeric antigen receptor for the selective treatment of T-cell malignancies. Blood 126(8):983–992. https://doi.org/10.1182/blood-2015-02-629527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dai Z, Mu W, Zhao Y, Jia X, Liu J, Wei Q, Tan T, Zhou J (2021) The rational development of CD5-targeting biepitopic cars with fully human heavy-chain-only antigen recognition domains. Mol Ther 29(9):2707–2722. https://doi.org/10.1016/j.ymthe.2021.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Feng J, Xu H, Cinquina A, Wu Z, Chen Q, Zhang P, Wang X, Shan H, Xu L, Zhang Q, Sun L, Zhang W, Pinz KG, Wada M, Jiang X, Hanes WM, Ma Y, Zhang H (2021) Treatment of aggressive t cell lymphoblastic lymphoma/leukemia using anti-CD5 CAR t cells. Stem Cell Rev Rep 17(2):652–661. https://doi.org/10.1007/s12015-020-10092-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Voisinne G, Gonzalez de Peredo A, Roncagalli R (2018) CD5, an undercover regulator of tcr signaling. Front Immunol 9:2900. https://doi.org/10.3389/fimmu.2018.02900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wada M, Zhang H, Fang L, Feng J, Tse CO, Zhang W, Chen Q, Sha S, Cao Y, Chen KH, Pinz KG, Chen X, Fan XX, Jiang X, Ma Y (2020) Characterization of an anti-CD5 directed CAR t-cell against t-cell malignancies. Stem Cell Rev Rep 16(2):369–384. https://doi.org/10.1007/s12015-019-09937-9

    Article  CAS  PubMed  Google Scholar 

  81. Sánchez-Martínez D, Baroni ML, Gutierrez-Agüera F, Roca-Ho H, Blanch-Lombarte O, González-García S, Torrebadell M, Junca J, Ramírez-Orellana M, Velasco-Hernández T, Bueno C, Fuster JL, Prado JG, Calvo J, Uzan B, Cools J, Camos M, Pflumio F, Toribio ML, Menéndez P (2019) Fratricide-resistant CD1a-specific CAR t cells for the treatment of cortical T-cell acute lymphoblastic leukemia. Blood 133(21):2291–2304. https://doi.org/10.1182/blood-2018-10-882944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Leong S, Inglott S, Papaleonidopoulou F, Orfinada K, Ancliff P, Bartram J, Carpenter B, Fielding AK, Ghorashian S, Grandage V, Gupta R, Hough R, Khwaja A, Pavasovic V, Rao A, Samarasinghe S, Vora A, Mansour MR, O'Connor D (2020) CD1a is rarely expressed in pediatric or adult relapsed/refractory T-ALL: Implications for immunotherapy. Blood Adv 4(19):4665–4668. https://doi.org/10.1182/bloodadvances.2020002502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Maciocia PM, Wawrzyniecka PA, Maciocia NC, Burley A, Karpanasamy T, Devereaux S, Hoekx M, O'Connor D, Leon TE, Rapoz-D'Silva T, Pocock R, Rahman S, Gritti G, Yánez DC, Ross S, Crompton T, Williams O, Lee LSH, Pule M, Mansour MR (2022) Anti-ccr9 chimeric antigen receptor t cells for t cell acute lymphoblastic leukemia. Blood. https://doi.org/10.1182/blood.2021013648

  84. Shi J, Zhang Z, Cen H, Wu H, Zhang S, Liu J, Leng Y, Ren A, Liu X, Zhang Z, Tong X, Liang J, Li Z, Zhou F, Huang L, Qin Y, Yang K, Zhang T, Zhu H (2021) CAR t cells targeting cd99 as an approach to eradicate T-cell acute lymphoblastic leukemia without normal blood cells toxicity. J Hematol Oncol 14(1):162. https://doi.org/10.1186/s13045-021-01178-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cox CV, Diamanti P, Moppett JP, Blair A (2016) Investigating cd99 expression in leukemia propagating cells in childhood t cell acute lymphoblastic leukemia. PloS One 11(10):e0165210. https://doi.org/10.1371/journal.pone.0165210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Georgiadis C, Rasaiyaah J, Gkazi SA, Preece R, Etuk A, Christi A, Qasim W (2021) Base-edited CAR t cells for combinational therapy against T cell malignancies. Leukemia 35(12):3466–3481. https://doi.org/10.1038/s41375-021-01282-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dai Z, Mu W, Zhao Y, Cheng J, Lin H, Ouyang K, Jia X, Liu J, Wei Q, Wang M, Liu C, Tan T, Zhou J (2022) T cells expressing CD5/CD7 bispecific chimeric antigen receptors with fully human heavy-chain-only domains mitigate tumor antigen escape. Signal Transduct Target Ther 7(1):85. https://doi.org/10.1038/s41392-022-00898-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Alcantara M, Tesio M, June CH, Houot R (2018) CAR t-cells for T-cell malignancies: Challenges in distinguishing between therapeutic, normal, and neoplastic t-cells. Leukemia 32(11):2307–2315. https://doi.org/10.1038/s41375-018-0285-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. You F, Wang Y, Jiang L, Zhu X, Chen D, Yuan L, An G, Meng H, Yang L (2019) A novel CD7 chimeric antigen receptor-modified nk-92mi cell line targeting T-cell acute lymphoblastic leukemia. Am J Cancer Res 9(1):64–78

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Martin-Antonio B, Sune G, Perez-Amill L, Castella M, Urbano-Ispizua A (2017) Natural killer cells: Angels and devils for immunotherapy. Int J Mol Sci 18(9). https://doi.org/10.3390/ijms18091868

  91. Baghery Saghchy Khorasani A, Yousefi AM, Bashash D (2022) CAR nk cell therapy in hematologic malignancies and solid tumors; obstacles and strategies to overcome the challenges. Int Immunopharmacol 110:109041. https://doi.org/10.1016/j.intimp.2022.109041

    Article  CAS  PubMed  Google Scholar 

  92. Foley B, Ta C, Barnes S, de Jong E, Nguyen M, Cheung LC, Buzzai A, Wagner T, Wylie B, Fernandez S, Cruickshank M, Endersby R, Kees U, Waithman J (2020) Identifying the optimal donor for natural killer cell adoptive therapy to treat paediatric B- and T-cell acute lymphoblastic leukaemia. Clin Transl Immunology 9(7):e1151. https://doi.org/10.1002/cti2.1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Xu Y, Liu Q, Zhong M, Wang Z, Chen Z, Zhang Y, Xing H, Tian Z, Tang K, Liao X, Rao Q, Wang M, Wang J (2019) 2b4 costimulatory domain enhancing cytotoxic ability of anti-CD5 chimeric antigen receptor engineered natural killer cells against T cell malignancies. J Hematol Oncol 12(1):49. https://doi.org/10.1186/s13045-019-0732-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Chen KH, Wada M, Pinz KG, Liu H, Lin KW, Jares A, Firor AE, Shuai X, Salman H, Golightly M, Lan F, Senzel L, Leung EL, Jiang X, Ma Y (2017) Preclinical targeting of aggressive T-cell malignancies using anti-CD5 chimeric antigen receptor. Leukemia 31(10):2151–2160. https://doi.org/10.1038/leu.2017.8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Xu X, Zhang W, Xuan L, Yu Y, Zheng W, Tao F, Nemechek J, He C, Ma W, Han X, Xie S, Zhao M, Wang J, Qu Y, Liu Q, Perry JM, Jiang L, Zhao M (2023) Pd-1 signalling defines and protects leukaemic stem cells from t cell receptor-induced cell death in t cell acute lymphoblastic leukaemia. Nat Cell Biol 25(1):170–182. https://doi.org/10.1038/s41556-022-01050-3

    Article  CAS  PubMed  Google Scholar 

  96. Cassaday RD, Garcia KA, Fromm JR, Percival MM, Turtle CJ, Nghiem PT, Stevenson PA, Estey EH (2020) Phase 2 study of pembrolizumab for measurable residual disease in adults with acute lymphoblastic leukemia. Blood Adv 4(14):3239–3245. https://doi.org/10.1182/bloodadvances.2020002403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the grants from the National Natural Science Foundation of China (Grant No. 81970138, 82270165); Jiangsu Province Natural Science Foundation of China (Grant No. BK20221235); the Translational Research Grant of NCRCH (Grant No. 2020ZKMB05); Jiangsu Province “333” Project, Social Development Project of the Science and Technology Department of Jiangsu (Grant No. BE2021649); the Gusu Key Medical Talent Program (Grant No. GSWS2019007); the National Key R&D Program of China (2022YFC2502703); the Bethune Charitable Foundation (BCF-IBW-XY-20220930-08); and a grant from Soochow University (H220771).

Author information

Authors and Affiliations

Authors

Contributions

Yuan-hong Huang was responsible for data analysis and manuscript writing. Chao-ling Wan offers advice on the language of the manuscript. Hai-ping Dai and Sheng-li Xue provides guidance and advice on the writing of the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Hai-ping Dai or Sheng-li Xue.

Ethics declarations

This review does not contain any studies with human participants or animals performed by any of the authors.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Yh., Wan, CL., Dai, Hp. et al. Targeted therapy and immunotherapy for T cell acute lymphoblastic leukemia/lymphoma. Ann Hematol 102, 2001–2013 (2023). https://doi.org/10.1007/s00277-023-05286-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-023-05286-3

Keywords

Navigation