Skip to main content

Advertisement

Log in

The prognostic value of controlling nutritional status (CONUT) score–based nomogram on extranodal natural killer/T cell lymphoma patients

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Controlling nutritional status (CONUT) score as an original nutritional assessment tool can be used to assess the prognosis of patients with a variety of malignancies. However, the predictive power of CONUT in extranodal natural killer/T cell lymphoma (ENKTL) patients has never been demonstrated. Our retrospective multicenter study aimed to explore the prognostic value of CONUT in newly diagnosed ENKTL. A total of 1085 newly diagnosed ENKTL patients between 2003 and 2021 were retrospectively retrieved. Cox proportional hazard model was used to explore the prognostic factors of overall survival (OS). The survival rate of ENKTL was evaluated using Kaplan-Meier analysis, and log-rank test was applied to the difference between groups. We investigated the prognostic performance of CONUT, the International Prognostic Index (IPI), the Korean Prognostic Index (KPI), and the Prognostic Index of Natural Killer Cell Lymphoma (PINK) using the receiver operating characteristic (ROC) curve and decision curve analysis (DCA). The median age at diagnosis for the whole cohort was 47 years, and the male to female ratio was 2.2:1. The 5-year OS for all patients was 72.2%. Multivariable analysis showed that CONUT, age, bone marrow involvement, ECOG PS score, and Chinese Southwest Oncology Group and Asia Lymphoma Study Group ENKTL stage were identified as independent predictive factors for OS. Based on multivariable results, a prognostic nomogram was developed. Subgroup analysis demonstrated that patients with severe malnutrition had poorest clinical outcome. In addition, ROC curves and DCA analysis proved that compared with IPI, KPI, and PINK models, the CONUT score-based nomogram showed a better prognostic predictive efficiency of ENKTL. CONUT could effectively stratify the prognosis of ENKTL and the proposed nomogram based on CONUT was an effective prognostic model for prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tse E, Kwong YL (2017) The diagnosis and management of NK/T-cell lymphomas. J Hematol Oncol 10:85. https://doi.org/10.1186/s13045-017-0452-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Missaoui N, Mestiri S, Bouriga A, Abdessayed N, Belakhdher M, Ghammem M et al (2019) Extranodal NK/T-cell lymphoma in Tunisia: clinicopathological features, immunophenotype and EBV infection. J Egypt Natl Canc Inst 31:1. https://doi.org/10.1186/s43046-019-0002-3

    Article  PubMed  Google Scholar 

  3. Montes-Mojarro IA, Chen BJ, Ramirez-Ibarguen AF, Quezada-Fiallos CM, Perez-Baez WB, Duenas D et al (2020) Mutational profile and EBV strains of extranodal NK/T-cell lymphoma, nasal type in Latin America. Mod Pathol 33:781–791. https://doi.org/10.1038/s41379-019-0415-5

    Article  CAS  PubMed  Google Scholar 

  4. Fox CP, Civallero M, Ko YH, Manni M, Skrypets T, Pileri S et al (2020) Survival outcomes of patients with extranodal natural-killer T-cell lymphoma: a prospective cohort study from the international T-cell Project. Lancet Haematol 7:e284–e294. https://doi.org/10.1016/s2352-3026(19)30283-2

    Article  PubMed  Google Scholar 

  5. Li K, Wang R, Huang S, Pan X, Chen H, Zhou L et al (2018) Prognostic nomogram for overall survival in extranodal natural killer/T-cell lymphoma patients. Clin Lymphoma Myeloma Leuk 18:e537–e543. https://doi.org/10.1016/j.clml.2018.08.011

    Article  PubMed  Google Scholar 

  6. Bu S, Yuan F, Wei X, Yin Q, Li Y, Mi R et al (2016) L-asparaginase-based regimen as a first-line treatment for newly diagnosed nasal type extranodal natural killer cell/T-cell lymphoma. Exp Ther Med 11:2437–2445. https://doi.org/10.3892/etm.2016.3249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. de Mel S, Hue SS, Jeyasekharan AD, Chng WJ, Ng SB (2019) Molecular pathogenic pathways in extranodal NK/T cell lymphoma. J Hematol Oncol 12:33. https://doi.org/10.1186/s13045-019-0716-7

    Article  PubMed  PubMed Central  Google Scholar 

  8. Vittayawacharin P, Khuhapinant A (2021) A five-year retrospective study of treatment outcomes using the L-asparaginase-based regimen as a first-line chemotherapy protocol for patients diagnosed with extranodal NK/T-cell lymphoma, nasal-type, in Thailand. Hematology 26:75–82. https://doi.org/10.1080/16078454.2020.1867783

    Article  CAS  PubMed  Google Scholar 

  9. International Non-Hodgkin's Lymphoma Prognostic Factors Project (1993) A predictive model for aggressive non-Hodgkin's lymphoma. N Engl J Med 329:987–994. https://doi.org/10.1056/nejm199309303291402

    Article  Google Scholar 

  10. Kim SJ, Yoon DH, Jaccard A, Chng WJ, Lim ST, Hong H et al (2016) A prognostic index for natural killer cell lymphoma after non-anthracycline-based treatment: a multicentre, retrospective analysis. Lancet Oncol 17:389–400. https://doi.org/10.1016/s1470-2045(15)00533-1

    Article  CAS  PubMed  Google Scholar 

  11. Lee J, Suh C, Park YH, Ko YH, Bang SM, Lee JH et al (2006) Extranodal natural killer T-cell lymphoma, nasal-type: a prognostic model from a retrospective multicenter study. J Clin Oncol 24:612–618. https://doi.org/10.1200/JCO.2005.04.1384

    Article  PubMed  Google Scholar 

  12. Chen SY, Yang Y, Qi SN, Wang Y, Hu C, He X et al (2021) Validation of nomogram-revised risk index and comparison with other models for extranodal nasal-type NK/T-cell lymphoma in the modern chemotherapy era: indication for prognostication and clinical decision-making. Leukemia 35:130–142. https://doi.org/10.1038/s41375-020-0791-3

    Article  CAS  PubMed  Google Scholar 

  13. Gupta D, Lis CG, Granick J, Grutsch JF, Vashi PG, Lammersfeld CA (2006) Malnutrition was associated with poor quality of life in colorectal cancer: a retrospective analysis. J Clin Epidemiol 59:704–709. https://doi.org/10.1016/j.jclinepi.2005.08.020

    Article  PubMed  Google Scholar 

  14. McMillan DC (2009) Systemic inflammation, nutritional status and survival in patients with cancer. Curr Opin Clin Nutr Metab Care 12:223–226. https://doi.org/10.1097/MCO.0b013e32832a7902

    Article  PubMed  Google Scholar 

  15. Karin M, Bogut A, Hojsak I, Babić E, Volarić M, Bevanda M (2020) Nutritional status and its effect on complications in patients with colorectal cancer. Wien Klin Wochenschr 132:431–437. https://doi.org/10.1007/s00508-020-01671-4

    Article  PubMed  Google Scholar 

  16. Benoist S, Brouquet A (2015) Nutritional assessment and screening for malnutrition. J Visc Surg 152(Suppl 1):S3–S7. https://doi.org/10.1016/s1878-7886(15)30003-5

    Article  PubMed  Google Scholar 

  17. Zhang X, Pang L, Sharma SV, Li R, Nyitray AG, Edwards BJ (2021) Malnutrition and overall survival in older patients with cancer. Clin Nutr 40:966–977. https://doi.org/10.1016/j.clnu.2020.06.026

    Article  PubMed  Google Scholar 

  18. Shen Z, Wang F, He C, Li D, Nie S, Bian Z et al (2021) The value of prognostic nutritional index (PNI) on newly diagnosed diffuse large B-cell lymphoma patients: a multicenter retrospective study of HHLWG based on propensity score matched analysis. J Inflamm Res 14:5513–5522. https://doi.org/10.2147/JIR.S340822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yan D, Shen Z, Zhang S, Hu L, Sun Q, Xu K et al (2021) Prognostic values of geriatric nutritional risk index (GNRI) and prognostic nutritional index (PNI) in elderly patients with Diffuse Large B-Cell Lymphoma. J Cancer 12:7010–7017. https://doi.org/10.7150/jca.62340

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ignacio de Ulíbarri J, González-Madroño A, de Villar NG, González P, González B, Mancha A et al (2005) CONUT: a tool for controlling nutritional status. First validation in a hospital population. Nutr Hosp 20:38–45

    PubMed  Google Scholar 

  21. Wang A, He Z, Cong P, Qu Y, Hu T, Cai Y et al (2020) Controlling nutritional status (CONUT) score as a new indicator of prognosis in patients with hilar cholangiocarcinoma is superior to NLR and PNI: a single-center retrospective study. Front Oncol 10:593452. https://doi.org/10.3389/fonc.2020.593452

    Article  PubMed  Google Scholar 

  22. Liu XY, Zhang X, Zhang Q, Xie HL, Ruan GT, Liu T et al (2021) Value of the controlling nutritional status score in predicting the prognosis of patients with lung cancer: a multicenter, retrospective study. JPEN J Parenter Enteral Nutr. https://doi.org/10.1002/jpen.2321

  23. Kuroda D, Sawayama H, Kurashige J, Iwatsuki M, Eto T, Tokunaga R et al (2018) Controlling Nutritional Status (CONUT) score is a prognostic marker for gastric cancer patients after curative resection. Gastric Cancer 21:204–212. https://doi.org/10.1007/s10120-017-0744-3

    Article  PubMed  Google Scholar 

  24. Baysal M, Bas V, Demirci U, Gulsaran SK, Umit E, Kirkizlar HO et al (2021) The utility of CONUT score in diffuse large B cell lymphoma patients. Niger J Clin Pract 24:1194–1199. https://doi.org/10.4103/njcp.njcp_429_20

    Article  CAS  PubMed  Google Scholar 

  25. Yang Y, Zhang YJ, Zhu Y, Cao JZ, Yuan ZY, Xu LM et al (2015) Prognostic nomogram for overall survival in previously untreated patients with extranodal NK/T-cell lymphoma, nasal-type: a multicenter study. Leukemia 29:1571–1577. https://doi.org/10.1038/leu.2015.44

    Article  CAS  PubMed  Google Scholar 

  26. Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E et al (2014) Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol 32:3059–3068. https://doi.org/10.1200/jco.2013.54.8800

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hong H, Li Y, Lim ST, Liang C, Huang H, Yi P et al (2020) A proposal for a new staging system for extranodal natural killer T-cell lymphoma: a multicenter study from China and Asia Lymphoma Study Group. Leukemia 34:2243–2248. https://doi.org/10.1038/s41375-020-0740-1

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lin GW, Xu C, Chen K, Huang HQ, Chen J, Song B et al (2020) Genetic risk of extranodal natural killer T-cell lymphoma: a genome-wide association study in multiple populations. Lancet Oncol 21:306–316. https://doi.org/10.1016/s1470-2045(19)30799-5

    Article  CAS  PubMed  Google Scholar 

  29. Yamaguchi M, Kwong YL, Kim WS, Maeda Y, Hashimoto C, Suh C et al (2011) Phase II study of SMILE chemotherapy for newly diagnosed stage IV, relapsed, or refractory extranodal natural killer (NK)/T-cell lymphoma, nasal type: the NK-Cell Tumor Study Group study. J Clin Oncol 29:4410–4416. https://doi.org/10.1200/jco.2011.35.6287

    Article  CAS  PubMed  Google Scholar 

  30. Li X, Cui Y, Sun Z, Zhang L, Li L, Wang X et al (2016) DDGP versus SMILE in newly diagnosed advanced natural killer/T-cell lymphoma: a randomized controlled, multicenter, open-label study in China. Clin Cancer Res 22:5223–5228. https://doi.org/10.1158/1078-0432.Ccr-16-0153

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Y, Ma S, Cai J, Yang Y, Jing H, Shuang Y et al (2021) Sequential P-GEMOX and radiotherapy for early-stage extranodal natural killer/T-cell lymphoma: a multicenter study. Am J Hematol 96:1481–1490. https://doi.org/10.1002/ajh.26335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yang Y, Zhu Y, Cao JZ, Zhang YJ, Xu LM, Yuan ZY et al (2015) Risk-adapted therapy for early-stage extranodal nasal-type NK/T-cell lymphoma: analysis from a multicenter study. Blood 126:1424–1432; quiz 1517. https://doi.org/10.1182/blood-2015-04-639336

    Article  CAS  PubMed  Google Scholar 

  33. Martí A, Marcos A, Martínez JA (2001) Obesity and immune function relationships. Obes Rev 2:131–140. https://doi.org/10.1046/j.1467-789x.2001.00025.x

    Article  PubMed  Google Scholar 

  34. Ansell SM (2019) The highs and lows of immune-checkpoint blockade in lymphoma. Cancer Immunol Res 7:696–700. https://doi.org/10.1158/2326-6066.Cir-18-0890

    Article  CAS  PubMed  Google Scholar 

  35. Mantzorou M, Koutelidakis A, Theocharis S, Giaginis C (2017) Clinical value of nutritional status in cancer: what is its impact and how it affects disease progression and prognosis? Nutr Cancer 69:1151–1176. https://doi.org/10.1080/01635581.2017.1367947

    Article  PubMed  Google Scholar 

  36. Ravasco P (2019) Nutrition in cancer patients. J Clin Med 8. https://doi.org/10.3390/jcm8081211

  37. van Bokhorst-de van der Schueren M A, van Leeuwen P A, Sauerwein H P, Kuik D J, Snow G B, and Quak J J.(1997) Assessment of malnutrition parameters in head and neck cancer and their relation to postoperative complications. Head Neck 19: 419-425. https://doi.org/10.1002/(sici)1097-0347(199708)19:5, <419::aid-hed9>3.0.co;2-2

    Article  PubMed  Google Scholar 

  38. Schmidt RA, Lee AYY (2022) How I treat and prevent venous thrombotic complications in patients with lymphoma. Blood 139:1489–1500. https://doi.org/10.1182/blood.2019003689

    Article  CAS  PubMed  Google Scholar 

  39. Turkbeyler IH, Ozturk ZA, Sayiner ZA, Gol M, Efendioglu EM, Sahinbeyoglu SJPIN (2020) Strong association between malnutrition, inflammation, and depression in elderly patients. A new novel geriatric complex based on malnutrition MID Complex? Progress Nutr 22:30–35

    CAS  Google Scholar 

  40. Boyanagari VK, Panda P, Boyanagari M, Panda SJA, o M H. (2018) Assessment of nutritional status, psychological depression, and functional ability of elderly population in South India. Arch Ment Health 19:150

    Article  Google Scholar 

  41. Shen Z, Wang F, He C, Li D, Nie S, Bian Z et al (2021) The value of prognostic nutritional index (PNI) on newly diagnosed diffuse large B-cell lymphoma patients: a multicenter retrospective study of HHLWG based on propensity score matched analysis. J Inflamm Res 14:5513–5522. https://doi.org/10.2147/jir.S340822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Akgün Çağlıyan G, Hacıoğlu S, Ünver Koluman B, İlkkılıç K, Nar R, Başer MN et al (2021) Is CONUT score a prognostic index in patients with diffuse large cell lymphoma? Turk J Med Sci 51:2112–2119. https://doi.org/10.3906/sag-2101-406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li YQ, Wang Y, Song Y, Han Y, Li JJ, Yue LL et al (2021) The influence of CONUT score on the prognosis of patients with multiple myeloma. Zhongguo Shi Yan Xue Ye Xue Za Zhi 29:781–786. https://doi.org/10.19746/j.cnki.issn.1009-2137.2021.03.020

    Article  PubMed  Google Scholar 

  44. Nemoto Y, Kondo T, Ishihara H, Takagi T, Fukuda H, Yoshida K et al (2021) The controlling nutritional status CONUT score in patients with advanced bladder cancer after radical cystectomy. In Vivo 35:999–1006. https://doi.org/10.21873/invivo.12343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li Y, Zhang C, Ji R, Lu H, Zhang W, Li LL et al (2020) Prognostic significance of the controlling nutritional status (CONUT) score in epithelial ovarian cancer. Int J Gynecol Cancer 30:74–82. https://doi.org/10.1136/ijgc-2019-000865

    Article  CAS  PubMed  Google Scholar 

  46. Liu C, Ding H, Zhu Q, Liu P, Zhu Y, Wang L et al (2022) Induction with MEDA regimen and consolidation with Auto-HSCT for stage IV NKTCL patients: a prospective multicenter study. Int J Cancer 151:752–763. https://doi.org/10.1002/ijc.34055

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to the Huaihai Lymphoma Working Group (HHLWG) for its participation in this study.

Funding

This study was funded by the Natural Science Foundation of Jiangsu Province, Grant/Award Number BK20171181; Jiangsu Key Research and Development Project of Social Development, Grant/Award Number BE2019638; Young Medical Talents of Jiangsu Science and Education Health Project, Grant/Award Number QNRC2016791; and Jiangsu Province’s Graduate Scientific Research Innovation Program (KYCX21–2685).

Author information

Authors and Affiliations

Authors

Contributions

WS and ZYS contributed to the conceptualization, supervision, and review. SZ, CS, and ZYS contributed to the formal analysis and writing—original draft. XCC, DSL, LLH, MZ, XDZ, HZ, JJY, LW, TJ, TGZ, QYM, CLW, LW, and DMY contributed to the data acquisition. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Wei Sang.

Ethics declarations

Ethics statement

Study approval was obtained from the independent Ethics Committees of each participating center in HHLWG and met Helsinki Declaration. Informed consent was obtained from each patient.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Sun, C., Chen, X. et al. The prognostic value of controlling nutritional status (CONUT) score–based nomogram on extranodal natural killer/T cell lymphoma patients. Ann Hematol 102, 1433–1442 (2023). https://doi.org/10.1007/s00277-023-05232-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-023-05232-3

Keywords

Navigation