Skip to main content

Advertisement

Log in

Stereoscopic visual area connectivity: a diffusion tensor imaging study

  • Original Article
  • Published:
Surgical and Radiologic Anatomy Aims and scope Submit manuscript

Abstract

Purpose

To study the white matter tracts connecting the different stereoscopic visual areas of the brain by diffusion tensor imaging.

Methods

In a previous study, we identified the cortical activations to a visual 3D stimulation in 12 subjects using functional MRI (fMRI). These areas of cortical activations [V5, V6, lateral occipital complex (LOC) and intra parietal sulcus areas (IPS)] in addition to the lateral geniculate nucleus (LGN) and the primary visual area V1 were chosen as regions of interest (ROIs). We studied by deterministic tractography the connections existing between these ROIs.

Results

Found connections were divided into three groups. The first group entails the geniculo-extrastriate connections. LGN was connected to V5, V6, IPS and LOC. These fibers course in the inferior longitudinal fascicule. The second group comprises the associative fibers. V1 was connected to V5 and LOC through the transverse occipital fascicule on one hand, and, to V6 and IPS through the stratum proprium cuni on the other hand. Connections between V5 and LOC, and V6 and IPS course within the vertical occipital fascicule. The third group contains commissural fibers. Forceps major entailed the connections between both V1, both V6, both IPS and IPS and contralateral V6. LGN was connected to contralateral LGN, V1, V6, IPS and LOC.

Conclusions

We have elucidated numerous connections between the visual areas and the LGN. Generalization of these results to the remainder of the population must remain prudent due to the limited number of subjects in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Tensor deflection method.

  2. Fiber assignation by continuous tracking.

References

  1. Abed Rabbo F, Koch G, Lefèvre C, Seizeur R (2015) Direct geniculo-extrastriate pathways: a review of the literature. Surg Radiol Anat 37:891–899

    Article  Google Scholar 

  2. Axer H, Beck S, Axer M et al (2011) Microstructural analysis of human white matter architecture using polarized light imaging: views from neuroanatomy. Front Neuroinform 5:28

    PubMed  PubMed Central  Google Scholar 

  3. Bridge H, Hicks SL, Xie J et al (2010) Visual activation of extra-striate cortex in the absence of V1 activation. Neuropsychologia 48:4148–4154

    Article  Google Scholar 

  4. Bridge H, Thomas O, Jbabdi S, Cowey A (2008) Changes in connectivity after visual cortical brain damage underlie altered visual function. Brain 131:1433–1444

    Article  Google Scholar 

  5. Catani M, Jones DK, Donato R, Ffytche DH (2003) Occipito-temporal connections in the human brain. Brain 126:2093–2107

    Article  Google Scholar 

  6. Dejerine JJ, Dejerine-Klumpke A (1895) Anatomie des centres nerveux. Rueff, Chicago

    Google Scholar 

  7. Dick AS, Tremblay P (2012) Beyond the arcuate fasciculus: consensus and controversy in the connectional anatomy of language. Brain 135:3529–3550

    Article  Google Scholar 

  8. Durand JB, Peeters R, Norman JF, Todd JT, Orban GA (2009) Parietal regions processing visual 3d shape extracted from disparity. Neuroimage 46:1114–1126

    Article  Google Scholar 

  9. Fattori P, Pitzalis S, Galletti C (2009) The cortical visual area V6 in macaque and human brains. J Physiol Paris 103:88–97

    Article  Google Scholar 

  10. Fernandez-Miranda JC, Rhoton ALJ, Alvarez-Linera J, Kakizawa Y, Choi C, De Oliveira EP (2008) Three-dimensional microsurgical and tractographic anatomy of the white matter of the human brain. Neurosurgery 62:989–1026; (discussion 1026)

    Article  Google Scholar 

  11. Frey SH (2007) What puts the how in where? Tool use and the divided visual streams hypothesis. Cortex 43:368–375

    Article  Google Scholar 

  12. Goodale MA, Humphrey GK (1998) The objects of action and perception. Cognition 67:181–207

    Article  CAS  Google Scholar 

  13. Koch G, Bannier E, Baumann A et al (2013) 3d visual fMRI using binocular stimulation. In: ESMRMB 3–5 Octobre 2013 Toulouse

  14. Ludwig E, Klinger J, Jabonero V (1956) Atlas Cerebri Humani: Der Innere Bau Des Gehirns. In: Karger S

  15. Magro E, Moreau T, Seizeur R, Zemmoura I, Gibaud B, Morandi X (2014) Connectivity within the primary motor cortex: a DTI tractography study. Surg Radiol Anat 36:125–135

    Article  Google Scholar 

  16. Maldonado IL, Mandonnet E, Duffau H (2012) Dorsal fronto-parietal connections of the human brain: a fiber dissection study of their composition and anatomical relationships. Anat Rec (Hoboken) 295:187–195

    Article  Google Scholar 

  17. Mandelstam SA (2012) Challenges of the anatomy and diffusion tensor tractography of the meyer loop. AJNR Am J Neuroradiol 33:1204–1210

    Article  CAS  Google Scholar 

  18. Mandonnet E, Gatignol P, Duffau H (2009) Evidence for an occipito-temporal tract underlying visual recognition in picture naming. Clin Neurol Neurosurg 111:601–605

    Article  Google Scholar 

  19. Milner AD, Goodale MA (2008) Two visual systems re-viewed. Neuropsychologia 46:774–785

    Article  CAS  Google Scholar 

  20. Mishkin M, Ungerleider LG, Macko KA (1983) Object vision and spatial vision: two cortical pathways. Trends in neurosciences 6:414–417

    Article  Google Scholar 

  21. Mori S, Van Zijl PC (2002) Fiber tracking: principles and strategies—a technical review. NMR Biomed 15:468–480

    Article  Google Scholar 

  22. Orssaud C (2006) Vision Binoculaire. Encycl Méd Chir. Elsevier, Paris (Ophtalmologie 1–10 [Article 21])

    Google Scholar 

  23. Peltier J, Travers N, Destrieux C, Velut S (2006) Optic radiations: a microsurgical anatomical study. J Neurosurg 105:294–300

    Article  Google Scholar 

  24. Pöppel E, Held R, Frost D (1973) Residual visual function after brain wounds involving the central visual pathways in man. Nature 243:295

    Article  Google Scholar 

  25. Rajimehr R, Tootell RB (2007) Organization of human visual cortex. The senses: a comprehensive reference 1:595–614

  26. Ramachandran VS (2002) Encyclopedia of the human brain. Academic Press, New York

    Google Scholar 

  27. Reiser MF, Semmler W, Hricak H (2008) Magnetic resonance tomography. Springer, New York

    Book  Google Scholar 

  28. Richards W (1973) Visual processing in scotomata. Exp Brain Res 17:333–347

    Article  CAS  Google Scholar 

  29. Riddoch G (1917) On the relative perceptions of movement and a stationary object in certain visual disturbances due to occipital injuries. Proc R Soc Med 10:13

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Salvolini U, Scarabino T (2006) High field brain MRI: use in clinical practice. Springer, New York

    Book  Google Scholar 

  31. Seizeur R, Wiest-Daessle N, Prima S, Maumet C, Ferre JC, Morandi X (2012) Corticospinal tractography with morphological, functional and diffusion tensor mri: a comparative study of four deterministic algorithms used in clinical routine. Surg Radiol Anat 34:709–719

    Article  Google Scholar 

  32. Smith SM, Jenkinson M, Woolrich MW et al (2004) Advances in functional and structural Mr image analysis and implementation as Fsl. Neuroimage 23(Suppl 1):S208–S219

    Article  Google Scholar 

  33. Weiskrantz L, Warrington EK, Sanders MD, Marshall J (1974) Visual capacity in the hemianopic field following a restricted occipital ablation. Brain 97:709–728

    Article  CAS  Google Scholar 

  34. Yamada K, Sakai K, Akazawa K, Yuen S, Nishimura T (2009) Mr tractography: a review of its clinical applications. Magn Reson Med Sci 8:165–174

    Article  Google Scholar 

  35. Yamamoto A, Miki Y, Urayama S et al (2007) Diffusion tensor fiber tractography of the optic radiation: analysis with 6-, 12-, 40-, and 81-directional motion-probing gradients, a preliminary study. Am J Neuroradiol 28:92–96

    CAS  PubMed  Google Scholar 

  36. Yeh F-C, Verstynen TD, Wang Y, Fernández-Miranda JC, Tseng W-YI (2013) Deterministic diffusion fiber tracking improved by quantitative anisotropy. PloS One 8:e80713

    Article  Google Scholar 

  37. Yukie M, Iwai E (1981) Direct projection from the dorsal lateral geniculate nucleus to the prestriate cortex in macaque monkeys. J Comp Neurol 201:81–97

    Article  CAS  Google Scholar 

  38. Zeki S, Shipp S (1988) The functional logic of cortical connections. Nature 335:311

    Article  CAS  Google Scholar 

  39. Zemmoura I, Serres B, Andersson F et al (2014) Fibrascan: a novel method for 3d white matter tract reconstruction in Mr space from cadaveric dissection. Neuroimage 103:106–118

    Article  Google Scholar 

Download references

Acknowledgements

MR imaging was performed with the technical help of Neurinfo ®, Rennes.

Author information

Authors and Affiliations

Authors

Contributions

FAR Project development, Data management and analysis, and Manuscript writing/editing. GK Project development, Data collection, management, and analysis, and Manuscript editing. CL Manuscript writing/editing. RS Project development and Manuscript writing/editing.

Corresponding author

Correspondence to Francis Abed Rabbo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abed Rabbo, F., Koch, G., Lefèvre, C. et al. Stereoscopic visual area connectivity: a diffusion tensor imaging study. Surg Radiol Anat 40, 1197–1208 (2018). https://doi.org/10.1007/s00276-018-2076-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00276-018-2076-3

Keywords

Navigation